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Abstract. In this article, we prove that a version of Tate conjectures for certain Deligne-Lusztig
varieties implies the Kudla-Rapoport conjecture for unitary Shimura varieties with maximal para-
horic level at unramified primes. Furthermore, we prove that the Kudla-Rapoport conjecture holds
unconditionally for several new cases in any dimension.
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1. Introduction

1.1. Introduction.

1.1.1. Background. The classical Siegel–Weil formula ([Sie35,Sie51,Wei65]) relates special values of
certain Eisenstein series as theta functions, which are generating series of representation numbers of
quadratic forms. Later on, Kudla ([Kud97,Kud04]) proposed an influential program and introduced
analogues of theta series in arithmetic geometry. One of the goals of the program is to prove the
so-called arithmetic Siegel–Weil formula relating the central derivative of certain Eisenstein series
with a certain arithmetic analogue of theta functions, which is a generating series of arithmetic
intersection numbers of n special divisors on Shimura varieties associated to SO(n− 1, 2) or U(n−
1, 1).
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For U(n− 1, 1)-Shimura varieties, Kudla and Rapoport ([KR11]) formulated a conjectural local
arithmetic Siegel–Weil formula at an unramified place with hyperspecial level, now known as the
Kudla–Rapoport conjecture. As a local analogue of the arithmetic Siegel-Weil formula, it relates
the central derivative of local densities of hermitian forms with the arithmetic intersection number
of special cycles on unitary Rapoport–Zink spaces. Now this conjectural identity is also known as
the Kudla-Rapoport conjecture and was recently proved by Li and Zhang in [LZ22a]. We refer the
readers to the introduction of [LZ22a] for more backgrounds and related results.

One of the distinguished features of the hyperspecial case [KR11] is that the corresponding
Rapoport-Zink space has good reduction. Accordingly, the analytic side has a clear formulation.
A natural and important question is to formulate and prove analogues of the Kudla–Rapoport
conjecture when the level structure is non-trivial, where many unexpected new phenomenons occur.

At a ramified place, there are two well-studied unitary Rapoport–Zink spaces with different level
structures. One of them is the exotic smooth model which has good reduction, and the other one
is the Krämer model which has bad (semistable) reduction. The analogue of Kudla–Rapoport
conjecture for the even dimensional exotic smooth model was formulated and proved by Li and
Liu in [LL22] using a strategy similar to [LZ22a]. For the Krämer model, corresponding to the
bad reduction in this case, the analytic side is more involved. In fact, even the formulation of
the conjecture is not clear and needs to be modified. This phenomenon in the presence of bad
reduction was first discovered by Kudla and Rapoport in [KR00] via explicit computation in their
study of the Drinfeld p-adic half plane. A similar computation was also done in [San17,HSY20] for
unitary special cycles on the Krämer models of the Drinfeld p-adic half plane. The Kudla–Rapoport
conjecture for Krämer models, in general, was formulated in [HSY23] with conceptual formulation
for the modification and proved in [HLSY23].

The present paper focus on Kudla–Rapoport conjectures with maximal parahoric level structures
at an unramified prime, where more new phenomenons occur. If the level structure is almost self-
dual, a Kudla-Rapoport type formula was obtained in [San17] when n = 2 by explicit computation
and established in general in [LZ22a] by relating it with the hyperspecial case. At an unramified
prime with general maximal parahoric level structure, such formulation was first given in [Cho22b]
in terms of weighted local density taking advantage of a duality between two Rapoport-Zink spaces
(see §7). In this paper, we also give another formulation in the spirit of [HSY23, HLSY23] when
the intersection number involved is purely contributed by Z-cycles.

Assuming a version of Tate conjectures for certain Deligne-Lusztig varieties, the present paper
settles this conjecture for any n and any maximal parahoric level structures. We are able to prove
the conjecture unconditionally for several special level structures for any n. In particular, we will
give a new proof of the almost self-dual case first proved in [LZ22a]. The main results we obtained
should be useful to relax the local assumptions in the arithmetic Siegel–Weil formula for U(n−1, 1)–
Shimura varieties by allowing maximal parahoric levels at unramified primes. Also, it may be
applied to relax the local assumptions in the arithmetic inner product formula in [LL21,LL22] and
the p-adic arithmetic inner product formula by Disegni and Liu in [DL22].
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1.1.2. Kudla–Rapoport conjecture. Let p be an odd prime. Let F0 be a finite unramified extension
of Qp with residue field k = Fq. Let F be an unramified quadratic extension of F0. Let π be a
uniformizer of both F and F0. Let F̆ be the completion of the maximal unramified extension of F .
Let OF , OF̆ be the ring of integers of F, F̆ respectively.

Let n ≥ 2 be an integer. To define the unitary Rapoport–Zink space with maximal parahoric
level structure, we fix a supersingular hermitian OF -modules X of signature (1, n− 1) over k̄. The
Rapoport-Zink space N = N [h]

n is the formal scheme over Spf OF̆ parameterizing hermitian formal
OF -modules X of signature (1, n− 1) and type h (see Definition 2.1) within the quasi-isogeny class
of X. The space N is locally of finite type, and semistable of relative dimension n− 1 over Spf OF̆ .

Let E be the framing hermitian OF -modules of signature (0, 1) over k̄. We define space of
quasi-homomorphisms to be V = Vn := HomOF

(E,X) ⊗OF
F . We can associate V with a natural

F/F0-hermitian form to make V a non-degenerate F/F0-hermitian space of dimension n. For any
subset L ⊂ V, we define the special cycle Z(L) (resp. Y(L) ) (see §2.2) to be the deformation locus
of L (resp. λ ◦ L) in N [h]

n .
Given an OF -lattice L ⊂ V of full rank n, we can define two integers: the arithmetic intersection

number Int(L) and the modified derived local density ∂Den(L).

Definition 1.1. Let L ⊂ V be an OF -lattice and x1, . . . , xn be an OF -basis of L. We define the
arithmetic intersection number

(1.1) Intn,h(L) := χ(N ,OZ(x1) ⊗L · · · ⊗L OZ(xn)) ∈ Z,

where OZ(xi) denotes the structure sheaf of the special divisor Z(xi), ⊗L denotes the derived
tensor product of coherent sheaves on N , and χ denotes the Euler–Poincaré characteristic. By
Proposition 2.12, Intn,h(L) is independent of the choice of the basis x1, . . . , xn and hence is a
well-defined invariant of L itself.

To define the modified derived local density ∂Den(L), we need to introduce local densities first.
Let M be another hermitian OF -lattice (of arbitrary rank) and HermL,M denote the OF0-scheme
of hermitian OF -module homomorphisms from L to M . Then we define the corresponding local
density to be

Den(M,L) := lim
d→+∞

|HermL,M (OF0/π
d)|

qd·dL,M
,

where dL,M is the dimension of HermL,M ⊗OF0
F0. Let Ik be an unimodular hermitian OF -lattice

of rank k. It is well-known that there exists a local density polynomial Den(M,L,X) ∈ Q[X] such
that for any integer k ≥ 0,

(1.2) Den(M,L, (−q)−k) = Den(Ik kM,L).

Here Ik kM denotes the orthogonal direct sum of Ik and M .
When M also has rank n and M ⊗OF

F is not isometric to L ⊗OF
F , we have Den(M,L) = 0.

In this case we write

Den′(M,L) := − d
dX

∣∣∣∣
X=1

Den(M,L,X),
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and define the (normalized) derived local density

(1.3) Den′
n,h(L) := Den′(In,h, L)

Den(In,h, In,h) ∈ Q.

Here In,h is a hermitian lattice with moment matrix Diag((1)n−h, (π)h). When the n and h are
clear in the context, we also simply denote it as Den′(L).

Then the naive analogue of the Kudla–Rapoport conjecture for N [h]
n should be the identity

Intn,h(L) ?= Den′
n,h(L).

However, as we mentioned before, since N [h]
n has bad reduction, some modification for the analytic

side is needed. Indeed, a similar consideration as in [HSY23, HLSY23] shows that naive analogue
cannot be true for trivial reasons. For example, if h > 0, then Int(L) vanishes by definition if L has
In−h+1 as a direct summand while Den′(L) does not vanish for such L by some direct computation.
We call an integral OF -lattice Λ ⊂ V a vertex lattice of type t if Λ∨/Λ is a k-vector space of
dimension t. In particular, for a vertex lattice Λ ⊂ V of type t < h, we have Int(Λ) = 0, while
Den′(Λ) ̸= 0 in general.

In order to have Int(Λt) = ∂Den(Λt) for vertex lattice Λt of type t < h, we define ∂Den(L) by
modifying Den′(L) with a linear combination of the (normalized) local densities

(1.4) Denn,t(L) := Den(Λt, L)
Den(Λt,Λt)

∈ Z.

In fact V ̸≈ I
[h]
n ⊗OF

F . As a result, if Λt ⊂ V, then t and h have different parity.

Definition 1.2 (Definition 3.2). Let L ⊂ V be an OF -lattice. Define the modified derived local
density

(1.5) ∂Denn,h(L) := Den′
n,h(L) +

⌊ (h−1)
2 ⌋∑

i=0
cn,h−1−2i · Denn,h−1−2i(L).

The coefficients cn,i ∈ Q here are chosen to satisfy

(1.6) ∂Denn,h(Λi) = 0, for 0 ≤ i ≤ h− 1 and i ≡ h− 1 mod 2,

which turns out to be a linear system in (cn,i) with a unique solution.

Finally, we propose the following Kudla-Rapoport conjecture for N [h]
n .

Conjecture 1.3 (Conjecture 3.3, Conjecture 7.7, Conjecture 8.8). Let L ⊂ V be an OF -lattice.
Then we have

Intn,h(L) = ∂Denn,h(L).

Remark 1.4. We remark that Den′
n,h(L) is not an integer in general. Only the modified ∂Denn,h(L)

is an integer. However, a priori, this is not clear at all.

The main purpose of this paper is to prove Conjecture 1.3 assuming a version of Tate conjectures
for certain Deligne-Lusztig varieties.
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Theorem 1.5 (Theorem 11.4). Let L ⊂ V be an OF -lattice of rank n. Assuming Conjecture 6.3,
we have

Intn,h(L) = ∂Denn,h(L).

In this paper, we also verified Conjecture 6.3 for N [1]
n , N [n−1]

n and N [2]
4 unconditionally.

Theorem 1.6 (Theorem 6.5, Theorem 11.5). Assume (n, h) is one of the following cases: (n, 1), (n, n−
1) and (4, 2). Then Conjecture 1.3 holds unconditionally.

Remark 1.7. Conjecture 1.3 for N [0]
n was the original Kudla-Rapoport conjecture proposed in

[KR11] and proved in [LZ22a]. The case (n, h) = (n, 1) was first proved by [LZ22a] using certain
Hecke correspondence that relates N [1]

n with Nn+1. Our proof is an attempt to prove the general
case uniformly in a way closer to the proof for N [0]

n in [LZ22a].

Remark 1.8. Although N [1]
n

∼= N [n−1]
n by a natural duality, Z-cycles on N [1]

n will be transformed
into Y-cycles on N [n−1]

n . Hence, Theorem 1.6 for N [n−1]
n is different with the case for N [1]

n . In
particular, Theorem 1.6 for N [n−1]

n and N [2]
4 are new.

We remark that Conjecture 1.3 is based on a different viewpoint from the one formulated
in [Cho22b]. The conjecture formulated in [Cho22b] is inspired by the duality N [h]

n
∼= N [n−h]

n

and is more general in the sense that it also considers the case when the intersection is be-
tween Z-cycles and Y-cycles. However, since our main theorem in this paper is about inter-
sections between Z-cycles and the above formulation is closer to previously studied cases e.g.
[LZ22a],[LL22],[LZ22b],[HLSY23], we state this new formulation in the introduction. We refer the
reader to Conjecture 7.6 for the general conjecture formulated in [Cho22b] and Conjecture 7.7 for
the specialized conjecture about the intersection between Z-cycles. We show that conjectures 1.3
and 7.7 are in fact equivalent in Proposition 8.9, which is interestingly a nontrivial fact to prove.

1.1.3. Strategy and novelty. Our general strategy is similar to the strategy of [LZ22a] using the
local modularity and uncertainty principle. More precisely, fix an OF -lattice L♭ ⊂ V of rank n− 1
and consider functions on V \ L♭

F ,

IntL♭(x) := Int(L♭ + ⟨x⟩), ∂DenL♭(x) := ∂Den(L♭ + ⟨x⟩).

We need to show IntL♭ = ∂DenL♭ as functions on V \ L♭
F . First, we have a natural decomposition

of IntL♭ and ∂DenL♭ into horizontal parts and vertical parts:

IntL♭ = IntL♭,H + IntL♭,V , ∂DenL♭ = ∂DenL♭,H + ∂DenL♭,V .

For the horizontal parts, we have IntL♭,H = ∂DenL♭,H by direct comparison. For the vertical parts,
IntL♭,V and ∂DenL♭,V satisfy “local modularity” in the sense that their Fourier-transforms have nice
behaviors.

Due to the existence of nontrivial levels, new phenomenons have already shown up for the
horizontal part. We can decompose the horizontal cycles into primitive horizontal cycles indexed by
“horizontal lattices” and essentially reduce the computation to n = 2, similar to [LZ22a]. However,
first of all, we have two different types of the “horizontal lattices” indexing the primitive horizontal
cycle. Moreover, the primitive piece indexed by one of them admits a further decomposition into
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mixed special cycles. Here mixed special cycles mean that they are intersections between both
Z-cycles and Y-cycles. We refer the readers to Theorem 5.3 for more details.

Now we turn our attention to the vertical part. We discuss the geometric side first. For a curve
C ⊂ N [h]

n , let IntC(Z(x)) := χ(N [h]
n ,OC ⊗L OZ(x)) and IntC(Y(x)) := χ(N [h]

n ,OC ⊗L OY(x)). If C
lies in N [1]

2 or N [0]
3 and is embedded into N [h]

n via an embedding of N [1]
2 or N [0]

3 into N [h]
n , then

explicit computation shows that”IntC(Z(x)) = −q−h · IntC(Y(x)),(1.7)

where ”IntC(Z(x)) denotes the Fourier transform of IntC(Z(x)) (see §1.2 for more details). We call
such a curve C a special curve. This was first observed in [LZ22a] when h = 0. In fact, when h = 0,
the more general identity ”IntL♭,V (Z(x)) = −IntL♭,V (Y(x))

was proved in [LZ22a], which we call local modularity in this case. When h ≥ 0 and C is special,
(1.7) was observed in [Zha22] based on computation of intersection numbers on N [1]

2 established
in [San17]. In [Zha22], this local modularity was used to prove arithmetic transfer conjecture in a
similar setting.

Nevertheless, it is by no means clear that this will be true in general. One observation is that if
IntL♭,V (x) can be written as a linear combination of IntC(x) for special C, then we have”IntL♭,V (x)“ = ”

−q−h · Intn−1,h−1,V (L♭) if val(x) = −1,
0 if val(x) ≤ −2.

(1.8)

Although it is not clear whether IntL♭,V (x) can be written as a linear combination of IntC(x) for
special C, one can always try to test the corresponding speculation on the analytic side, which is
a central idea for many of the past works. Indeed, for example, we recognized that there should
exist two different types of horizontal lattices by testing the analytic side first (the horizontal part
goes to infinity when val(x) goes to infinity). Also, it is really the computation of ’∂DenL♭,V (x) in
the N [2]

4 case inspires us what we should expect in general for the geometric side as we explained
in §4.

On the other hand, once we have a big picture for the geometric side with the help of explicit
computation from the analytic side, the insight from the geometric side also serves as a guiding
principle to obtain purely analytic results. For example, [HLSY23, Proposition 7.5] is inspired by
the fact that Z(L) is empty for non-integral L, and the proof of [HLSY23, Proposition 7.5] gives
important hints for how to prove the rest major analytic results of [HLSY23]. This is also what
happened in the current case.

Indeed, as one of the main results, we manage to prove an analytic analogue of (1.8) uncondi-
tionally. More precisely, we prove ∂DenL♭,V (x) can be extended to V as a locally constant function
and ’∂DenL♭,V (x) =

 −q−h · Intn−1,h−1,V (L♭) if val(x) = −1,
0 if val(x) ≤ −2.

(1.9)
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As a result, assuming (1.8), for any x with val(x) < 0, we have”IntL♭(x) − ’∂DenL♭(x) = ”IntL♭,V (x) − ’∂DenL♭,V (x) = 0.

Then the identity IntL♭(x) − ∂DenL♭(x) = 0 follows from the uncertainty principle as in [LZ22a].
We remark that (1.9) suggests that IntL♭,V (x) might be written as a linear combination of IntC(x)

for special curve C. When h = 0, this is indeed the case and was proved in [LZ22a, Corollary 5.3.3].
Therefore we propose this statement as a conjecture in Conjecture 6.3.

In order to establish (1.9), we make use of the primitive decomposition of the local density
polynomial into primitive local density polynomials and obtain a decomposition of ∂Den(L):

(1.10) ∂Den(L) =
∑

L⊂L′

∂Pden(L′),

where L′ runs over OF -lattices in LF containing L, and the symbol Pden stands for the primitive
version of Den (see (3.6)). The key reason to consider this primitive decomposition and ∂Pden(L) is
that we usually have a very simple formula for ∂Pden(L) which eventually makes the computation
about ∂Den(L) possible. This is the case for all the previously proved Kudla-Rapoport type
formulas, e.g. [LZ22a],[LL22],[LZ22b], and [HLSY23].

Although a similar approach to compute ∂Pden(L) as in [HLSY23] may be directly generalized to
the current situation, we decide to generalize the main result of [Cho23] to obtain an explicit formula
of ∂Pden(L) (see Proposition 8.17). One of the reasons we choose this approach is due to the fact
that Proposition 8.17 itself is already a certain induction formula that reduces the computation of
∂Pden(L) to the good reduction case (see Remark 8.18), which is particularly handy in order to
prove Theorem 1.9 below.

One of the major new phenomenons and difficulties we found and overcame in this paper is the
fact that when there is a non-trivial level structure, ∂Pden(L) no longer has a simple formula in
general. This can be seen via some explicit computation using Proposition 8.17. Nevertheless,
inspired by an attempt to compute the Fourier transform of ∂DenL♭,V (x) (e.g. to obtain (1.9)),
we find simple inductive formulas for ∂Pden(L) which suffices to control the Fourier transform of
∂DenL♭,V (x). In fact, such inductive formulas also hold in all the previously studied cases and the
simple formulas for ∂Pden(L) in these cases follow as a direct corollary.

More precisely, let ti(L) and t≥i(L) be the number of the fundamental invariants of L that is
exactly i and at least i respectively. Then we have the following.

Theorem 1.9 (Theorem 9.4). Let L be a hermitian lattice with val(L) ̸≡ h mod 2. We have
∂Pdenn,h(L) depends only on (t≥2(L), t1(L), t0(L)). For simplicity, we denote it as Dn,h(t2, t1, t0).
Moreover, assume that (t2 − 1, t1 + 1, t0) ̸= (n− h, h, 0), t0 ≤ n− h and t2 ≥ 1, then we have

Dn,h(t2, t1, t0) −Dn,h(t2 − 1, t1 + 1, t0) = −(−q)2n−h−1−t1−2t0Dn−1,h−1(t2 − 1, t1, t0).

The above inductive formula is complemented by the following simple formulas for special
Dn,h(t2, t1, t0).

Theorem 1.10. With the same notations and assumptions as in Theorem 1.9, we have the follow-
ing.
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(1) (Lemma 9.5, Proposition 9.6) If t0 > n− h, then Dn,h(t2, t1, t0) = 0.
(2) (Theorem 9.8 (1)) If t2 = 0 and h+ 1 ≤ t1. Then, we have

Dn,h(0, t1, t0) =
∏t1

l=h+1(1 − (−q)l)
(1 − (−q)t1−h) .

(3) (Theorem 9.8 (2)) If t2 = 1 and h− 1 ≤ t1. Then, we have

Dn,h(1, t1, t0) =
®

1 if t1 = h− 1, h;∏t1
l=h+1(1 − (−q)l) if t1 ≥ h+ 1.

Theorems 1.9 and 1.10 will be proved in §9 using the formula for ∂Pden(L) obtained in [Cho23].
As we have remarked, the method developed in [HLSY23] may also be adapted to the current case.
However, we found that using the formulas in [Cho23] is easier for our purpose so we stick with
this approach. Note that the formulas in [Cho23] are derived via a duality between weighted local
densities in analogy with the duality between N [h]

n and N [n−h]
n , and this might be a particular

reason for why this formula so applicable in the current case.
With the help of formulas for ∂Pden(L), we finally prove (1.9) via certain involved weighted

lattice counting in §10 via a similar method as in [LZ22b,HLSY23]. However, since ∂Pden(L) now
depends on t≥2(L), t1(L) and t0(L), the counting becomes much more involved compared with the
ones in [LZ22b,HLSY23].

1.2. Notation and terminology.
• Let p be an odd prime. Let F0 be a finite unramified extension of Qp with residue field
k = Fq. Let F be the unramified quadratic extension of F0. Let π be a uniformizer of F
and F0. Let F̆ be the completion of the maximal unramified extension of F . Let OF , OF̆

be the ring of integers of F, F̆ respectively.
• We say a sublattice of a hermitian space is non-degenerate if the restriction of the hermitian

form to it is non-degenerate.
• In this paper, without explicit mentioning a lattice means a non-degenerate hermitian OF -

lattice. Unless otherwise stated, the symbol L always means a non-degenerate lattice of
rank n with a hermitian form ( , ).

• We define L∨ to be the dual lattice of L with respect to the hermitian form ( , ). If L ⊂ L∨,
we say L is integral. If L ⊂ L∨ ⊂ π−1L, we say L is a vertex lattice.

• We say that a basis {ℓ1, . . . , ℓn} of L is a normal basis (which always exists) if its moment
matrix T = ((ℓi, ℓj))1≤i,j≤n is

Diag(πα1 , . . . , παn)

where α1, . . . , αn ∈ Z. Moreover, we define its fundamental invariants (a1, · · · , an) to be
the unique nondecreasing rearrangement of (α1, . . . , αn).

• We define the valuation of L to be val(L) := ∑n
i=1 ai, where (a1, · · · , an) are the fundamental

invariants of L. For x ∈ L, we define val(x) = val((x, x)), where val(π) = 1.
• We call a sublattice N ⊂ M primitive in M if dimFqN = r(N), where N = (N +πM)/πM .

We also use L to denote L⊗OF
OF /(π).
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• We use Im to denote a unimodular lattice of rank m, and In,h to denote a hermitian lattice
with moment matrix Diag((1)n−h, (π)h).

• For a hermitian space V, we let V?i := {x ∈ V | val(x)?i} where ? can be ≥, ≤ or =.
• Fix an unramified additive character ψ : F0 → C×. Here ”unramifiedness” means that the

conductor of ψ (i.e., the largest fractional ideal in F0 on which ψ is trivial) is OF0 . For an
integrable function f on V, we define its Fourier transform f̂ to be

f̂(x) :=
∫
V
f(y)ψ(trF/F0(x, y))dy, x ∈ V.

We normalize the Haar measure on V to be self-dual, so f̂(x) = f(−x). For an OF -lattice
L ⊂ V of rank n, we have (under the assumption that F/F0 is unramified)

1̂L = vol(L)1L∨ , and vol(L) =
[
L∨ : L

]−1/2 = q− val(L).

Note that val(L) can be defined for any lattice L (not necessarily integral) so that the above
equality for vol(L) holds.
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2. Rapoport-Zink space and special cycles

2.1. Rapoport-Zink space. In this section, we review the definition and basic properties of
Rapoport-Zink space and special cycles.

Definition 2.1. For any Spf OF̆ -scheme S, a hermitian formal OF -moodule (X, ι, λ) of signature
(1, n− 1) and type h over S is the following data:

• X is a strict formal OF0-module over S of relative height 2n and dimension n. Strictness
means the induced action of OF0 on LieX is via the structure morphism OF0 → OS .

• ι : OF → End(X) is an action of OF on X that extends the action of OF0 . We require that
the Kottwitz condition of signature (1, n− 1) holds for all a ∈ OF :

(2.1) char(ι(a) | LieX) = (T − a)(T − a)n−1 ∈ OS [T ].

• λ is a polarization on X, which is OF /OF0 semi-linear in the sense that the Rosati involution
Rosλ induces the non-hrivial involution on ι : OF → End(X).

• We require that the finite flat group scheme Kerλ over S lies in X[π] and is of order q2h.

An isomorphism (X1, ι1, λ1) ∼−→ (X2, ι2, λ2) between two such triples is an OF -linear isomor-
phism φ : X1

∼−→ X2 such that φ∗(λ2) = λ1. Up to OF -linear quasi-isogeny compatible with the
polarization, there exists a unique such triple (X, ιX, λX) over F. Fix one choice of (X, ιX, λX) as
the framing object.

9



Definition 2.2. Let (Nilp) be the category of OF -schemes S such that π is locally nilpotent on S.
Then the Rapoport–Zink space associated with (X, ιX, λX) is the functor

N(X,ιX,λX) = N [h]
n → Spf OF̆

sending S ∈ (Nilp) to the set of isomorphism classes of tuples (X, ι, λ, ρ), where
• (X, ι, λ) is a hermitian formal OF -module of dimension n and type h over S;
• ρ : X ×S S → X ×F S is an OF -linear quasi-isogeny of height 0 over the reduction S :=
S ×OF̆0

F such that ρ∗(λX,S) = λS .

The functor N [h]
n is representable by a formal scheme over Spf OF̆ which is locally formally of

finite type by [RZ96]. Moreover, this formal scheme is regular (see [Cho18, Proposition 3.33]). We
often simply denote N [h]

n as N if the signature and type are clear in the context.
There is an isomorphism θ : N [h]

n
∼→ N [n−h]

n constructed as follows ([Cho18, Remark 5.2]). For
each S ∈ (Nilp),

N [h]
n (S) θ→ N [n−h]

n (S),

(X, iX , λX , ρX) 7→ (X∨, ī∨X , λ
′
X , (ρ∨

X)−1),

where λ′
X : X∨ → X is the unique polarization such that λ′

X ◦ λX = iX(π), and for a ∈ OF , the
action ī∨X is defined as ī∨X(a) := iX(a∗)∨. When we denote N [h]

n as N , we use N ∨ to denote N [n−h]
n .

2.2. Special cycles. To define special cycles, we need to fix a hermitian formal OF -moodule
(E, iE, λE) of signature (0, 1) and type 0 over F. Then we can similarly define a Rapoport-Zink
Space N(E,iE,λE) which we denote as N 0 for simplicity. Recall that there is a unique lifting (E , ιE , λE)
of (E, iE, λE) over OF̆ .

Definition 2.3. We define the space of special homomorphism to be the F -vector space

V := HomOF
(E,X) ⊗Z Q.

We can associate V with a naturally defined hermitian form as follows. For x, y ∈ V, we define a
hermitian form h on V as

(x, y) = λ−1
E ◦ y∨ ◦ λX ◦ x ∈ EndOF

(E) ⊗ Q
i≃
X≃ F.

We often omit i−1
E via the identification EndOF

(E) ⊗ Q ≃ F .

Definition 2.4. [KR11, Definition 3.2], [Cho18, Definition 5.4]
(1) For x ∈ V, we define the special cycle Z(x) to be the closed formal subscheme of N 0 × N

with the following property: For each OF -scheme S such that π is locally nilpotent, Z(x)(S)
is the set of all points ξ = (ES , ιES

, λES
, X, iX , λX , ρX) in N 0 × N )(S) such that the quasi-

homomorphism
ρ−1

X ◦ x ◦ ρES
: ES ×S S → X ×S S

extends to a homomorphism from ES to X.
10



(2) For y ∈ V, we define the special cycle Y(y) in N 0 ×N as follows. First, consider the special
cycle Z(λX ◦ y) in N 0 × N ∨. This is the closed formal subscheme of N 0 × N ∨. We define
Y(y) as (id× θ−1)(Z(λX ◦ y)) in N 0 × N

Note that N 0 can be identified with Spf OF̆ , and hence Z(x),Y(y) can be identified with closed
formal subschemes of N .

The same proof of [KR14, Proposition 5.9] gives us the following.

Proposition 2.5. [KR14, Proposition 5.9] The functors Z(x) and Y(y) are representable by Cartier
divisors of N .

Special cycles have the following properties.

Proposition 2.6. [Cho18, Proposition 5.10] Let x, y ∈ V.
(1) If val((x, x)) = 0, then Z(x) ≃ N [h]

n−1.
(2) If val((y, y)) = −1, then Y(y) ≃ N [h−1]

n−1 .

Proposition 2.7. [Cho18, Proposition 5.11] Assume that val((x, x)) = 0 and val((y, y)) = −1.
Assume further that by rescaling as in the proof of [Cho18, Proposition 5.10], x∗ ◦ x = 1, and
(λX ◦ y)∗ ◦ (λX ◦ y) = 1. Here, x∗ (resp. (λX ◦ y)∗) is the adjoint of x (resp. (λX ◦ y)) with respect to
the polarizations λX and λE (resp. λ′

X and λE). We define ex := x◦x∗ and ey := (λX ◦y)◦ (λX ◦y)∗.
Fix isomorphisms

Φ : Z(x) ≃ N [h]
n−1,

Ψ : Y(y) ≃ N [h−1]
n−1 ,

as in Proposition 2.6. Then the following statements hold.
(1) For z ∈ V such that (x, z) = 0, let z′ := (1−ex)◦z. Then, we have Φ(Z(x)∩Z(z)) = Z(z′)

in N [h]
n−1 and (z′, z′) = (z, z).

(2) For w ∈ V such that (x,w) = 0, let w′ := (1−ex)◦w. Then, we have Φ(Z(x)∩Y(w)) = Y(w′)
in N [h]

n−1 and (w′, w′) = (w,w).
(3) For z ∈ V such that (y, z) = 0, let z′ := (1− e∨

y )◦ z. Then, we have Ψ(Y(y)∩Z(z)) = Z(z′)
in N [h−1]

n−1 and (z′, z′) = (z, z).
(4) For w ∈ V such that (y, w) = 0, let w′ := (1−e∨

y )◦w. Then, we have Ψ(Y(y)∩Y(w)) = Y(w′)
in N [h−1]

n−1 and (w′, w′) = (w,w).

2.3. Horizontal and vertical part of special cycles. We closely follow [LZ22a, §2.9] in this
subsection. We call a formal scheme Z over Spf OF̆ vertical (resp. horizontal) if π is locally
nilpotent on Z (resp. flat over Spf OF̆ ). In particular, the formal scheme-theoretic union of two
vertical (resp. horizontal) formal subschemes of a formal scheme is again vertical (resp. horizontal).

Now we define the horizontal part and vertical part of Z respectively. The horizontal part ZH

of Z is defined to be the closed formal subscheme with ideal sheaf OZ [π∞] ⊂ OZ . Then ZH is the
maximal horizontal closed formal subscheme of Z. For noetherian Z, we can find N ≫ 0 such that
πN OZ [π∞] = 0. Then the vertical part ZV ⊂ Z is defined to be the closed formal subscheme with
ideal sheaf πN OZ .

11



Note that OZ [π∞] ∩ πN OZ = 0 implies the following decomposition:

Z = ZH ∪ ZV .

The same proof of [LZ22a, Lemma 2.9.2] gives the following.

Lemma 2.8. [LZ22a, Lemma 2.9.2] Let L ⊂ V be a OF -lattice of rank r ≥ n − 1 such that LF is
non-degenerate. Then Z(L) is noetherian.

The following lemma follows from the same proof of [LZ22a, Lemma 5.1.1].

Lemma 2.9. [LZ22a, Lemma 5.1.1] Let L♭ be an OF -lattice of rank n− 1 in Vn. Then Z(Lb)V is
supported on N red

n , i.e., OZ(Lb)V
is annihilated by a power of the ideal sheaf of N red

n ⊂ Nn.

2.4. Linear invariance. Following [How19], we show the linear invariance of intersection numbers.
In this subsection, we use N to denote N [h]

n and (X, ιX , λX) to denote the the universal object over
N . Let D(X) denote the covariant Grothendieck-Messing crystal of X restricted to the Zariski site.
Then we have a short exact sequence of locally free ON -modules:

0 → Fil(X) → D(X) → Lie(X) → 0.

which is OF -linear via the action given by ιX . Let OF = OF0 +OF0α and

ϵ := ᾱ⊗ 1 − 1 ⊗ ᾱ ∈ OF ⊗OF0
ON ,

ϵ̄ := α⊗ 1 − 1 ⊗ ᾱ ∈ OF ⊗OF0
ON .

Definition 2.10. Let LX be the image of ϵ on Lie(X). In other words, LX := ϵLie(X).

According to the Kottwitz signature condition, we know LX ⊂ Lie(X) is locally a ON -module
direct summand of rank 1.

For a closed formal subscheme Z of N with ideal sheaf IZ , we denote by Z̃ the closed formal
subscheme defined by the sheaf I2

Z . Let x ∈ V be a non-zero special homomorphism. Let X0 be
the universal object of N [0]

1 . By the very definition of Z(x), we have

X0|Z(x)
x→ X|Z(x),

which induces an OF -linear morphism of vector bundles

D(X0)|Z(x)
x→ D(X)|Z(x).

By the Grothendieck–Messing theory, we may canonically extend the above morphism to a mor-
phism

D(X0)|Z̃(x)
x̃→ D(X)|Z̃(x),

which no longer preserves the Hodge filtrations and hence induces a nontrivial morphism

Fil(X0)|Z̃(x)
x̃→ Lie(X)|Z̃(x).(2.2)

Proposition 2.11. The morphism (2.2) induces a morphism

Fil(X0)|Z̃(x)
x̃→ LX |Z̃(x).

Moreover, Z(x) is the vanishing locus of x̃.
12



Proof. According to the signature condition of X0, we have Fil(X0) = ϵD(X0) since both are locally
ON direct summands of D(X0) of rank 1 where ι(a) acts as ā. Since x̃ is OF -linear, we have

x̃(Fil(X0)) = x̃(ϵD(X0)) ∈ ϵLie(X) = LX .

Now the second claim follows from the Grothendieck–Messing theory. □

Now given a nonzero element x ∈ V, we define a chain complex of locally free ON -modules

C(x) := (· · · → 0 → IZ(x) → ON → 0)

supported in degrees 1 and 0 with the map IZ(x) → ON being the natural inclusion. We extend
the definition to x = 0 by setting

C(0) := (· · · → 0 → ω
0→ ON → 0)

supported in degrees 1 and 0 , where ω is the line bundle such that ω−1 = Hom(Fil(X0), LX).
The following is our main result of this subsection which follows from Proposition 2.12 by the

same argument as in [How19].

Proposition 2.12. Let 0 ⩽ m ⩽ n be an integer. Suppose that x1, . . . , xm ∈ V and y1, . . . , ym ∈ V
generate the same OE-submodule. Then we have an isomorphism

Hi(C(x1) ⊗ON · · · ⊗ON C(xm)) ≃ Hi(C(y1) ⊗ON · · · ⊗ON C(ym))

of ON -modules for every i.

3. Local density and the modified Kudla–Rapoport conjecture

In this section, we discuss the conjecture 1.3 proposed in the introduction in detail.

3.1. Local density. Let L,M be two integral hermitian OF -lattices with rank n,m respectively.
Let Herm L,M be the scheme of integral representations of M by L, an OF0-scheme such that for
any OF0-algebra R,

HermL,M (R) = Herm(L⊗OF0
R,M ⊗OF0

R)

where Herm denotes the set of hermitian module homomorphisms. The local density of integral
representations of M by L is defined to be

Den(M,L) := lim
d→+∞

# HermL,M (OF0/(πd))
qd·dim(HermL,M )F0

.

If the generic fiber (HermL,M )F0 is non-empty, then we have n ≤ m and

dim(HermM,L)F0 = dim Um − dim Um−n = n · (2m− n).

Now we consider the local density polynomial. Let Ik be an unimodular hermitian OF -lattice
of rank k. It is well-known that there exists a local density polynomial Den(M,L,X) ∈ Q[X] such
that for any integer k ≥ 0,

(3.1) Den(M,L, (−q)−k) = Den(Ik kM,L).
13



When M has also rank n and χ(M) = −χ(L), we have Den(M,L) = 0 and in this case we write

Den′(M,L) := − d
dX

∣∣∣∣
X=1

Den(M,L,X).

Define the (normalized) derived local density

(3.2) Den′
n,h(L) := Den′(In,h, L)

Den(In,h, In,h) ∈ Q.

Here In,h is a hermitian lattice with moment matrix Diag((1)n−h, (π)h). When the n and h are
clear in the context, we also simply denote it as Den′(L).

Recall that an integral OF -lattice Λ ⊂ V is a vertex lattice of type t if Λ∨/Λ is a κ-vector space
of dimension t.

Lemma 3.1. Assume t < h, we have Intn,h(Λt) = 0.

Proof. First, we write Λt = In−t k Jt where Jt is a lattice with moment matrix (p)t. According to
Proposition 2.6, Z(Λt) in N [h]

n is isomorphic to Z(Ih−tkJt) in N [h]
h . However, for (X, ι, λ, ρ) ∈ N [h]

h ,
we have Kerλ = X[π] by definition of N [h]

h . Hence, λ = πλ′ for some principal λ′. Assume
(X, ι, λ, ρ) ∈ Z(x) for some x ∈ V, then it is clear from the definition of Z(x) such that val(x) ≥ 1.
Hence, if val(x) = 0, then Z(x) = ∅ in N [h]

h . In particular, Z(Ih−t k Jt) in N [h]
h is empty. □

The naive analogue of the Kudla–Rapoport conjecture for N [h]
n states that

Intn,h(L) ?= Den′
n,h(L).

However, this can not be true since Intn,h(Λt) = 0 by Lemma 3.1, but Den′
n,h(Λt) ̸= 0.

Now a similar consideration as in [HSY23, HLSY23] suggests the following. In order to have
Int(Λt) = ∂Den(Λt) for vertex lattice Λt of type t < h, we define ∂Den(L) by modifying Den′(L)
with a linear combination of the (normalized) local densities

(3.3) Denn,t(L) := Den(Λt, L)
Den(Λt,Λt)

∈ Z.

Note that since F/F0 is unramified, the hermitian space over F is determined by the parity of
valuation of the hermitian form. As a result, if Λt ⊂ V, then t and h have different parity.

Definition 3.2. Let L ⊂ V be an OF -lattice. Define the modified derived local density

(3.4) ∂Denn,h(L) := Den′
n,h(L) +

⌊ (h−1)
2 ⌋∑

i=0
cn,h−1−2i · Denn,h−1−2i(L).

The coefficients cn,i ∈ Q here are chosen to satisfy

(3.5) ∂Denn,h(Λi) = 0, for 0 ≤ i ≤ h− 1 and i ≡ h− 1 mod 2,

which turns out to be a linear system in (cn,i) with a unique solution since Den(Λj ,Λi) = 0 if j > i.

Conjecture 3.3. Let L ⊂ V be an OF -lattice. Then we have

Intn,h(L) = ∂Denn,h(L).
14



Although the definition of ∂Den(L) is very explicit, the computation of ∂Den(L) is a challenging
task, especially when h > 0, In,h and the unimodular lattice Ik lie in two different Jordan block.
One way to compute ∂Den(L) is to decompose ∂Den(L) into primitive pieces as we introduce now.

Similarly to the local density polynomial, we define the primitive local density polynomial
Pden(M,L,X) to be the polynomial in Q[X] such that

(3.6) Pden(M,L, (−q)−k) := lim
d→+∞

# PhermL,M (OF0/(πd))
qd·dim(HermL,M )F0

,

where

PhermL,MkHk(OF0/(πd)) := {ϕ ∈ HermL,MkHk(OF0/(πd)) | ϕ is primitive}.

Recall that ϕ ∈ HermL,MkIk
(OF0/(πd)) is primitive if dimFq ((ϕ(L) + π(M k Ik))/π(M k Ik) = n.

In particular, we have Den(M,M) = Pden(M,M) for any hermitian OF -lattice M . We can also
similarly define the normalized primitive local densities:

Pden′
n,h(L) = Pden′(In,h, L)

Den(In,h, In,h) , Pdenn,t(L) := Pden(Λt, L)
Den(Λt,Λt)

,

and

∂Pdenn,h(L) := Pden′
n,h(L) +

⌊ (h−1)
2 ⌋∑

i=0
cn,h−1−2i · Pdenn,h−1−2i(L).

The following lemma decomposes local density polynomials into a summation of primitive local
density polynomials. The following is essentially due to [CY20]. See also [LZ22a, Theorem 3.5.1].

Lemma 3.4. Let M and L be lattices of rank m and n. Then we have

Den(M,L,X) =
∑

L⊂L′⊂LF

(qn−mX)ℓ(L′/L)Pden(M,L′, X),

where ℓ(L′/L) = lengthOF
L′/L. Here Pden(M,L′, X) = 0 for L′ with fundamental invariant

strictly less than the smallest fundamental invariant of M . In particular, the summation is finite.

Conversely, we can recover primitive local density polynomials as a linear combination of local
density polynomials.

Theorem 3.5. [HSY23, Theorem 5.2] Let M and L be lattices of rank m and n. We have

Pden(M,L,X) =
n∑

i=0
(−1)iqi(i−1)/2+i(n−m)Xi

∑
L⊂L′⊂π−1L

ℓ(L′/L)=i

Den(M,L′, X).

Corollary 3.6. Let L be a lattice of rank n. Then

∂Pdenn,h(L) =
n∑

i=0
(−1)iqi(i−1)/2 ∑

L⊂L′⊂π−1L
ℓ(L′/L)=i

∂Denn,h(L′).
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Lemma 3.7. For two lattices L and M of the same rank n, we have

Pden(M,L) =

Den(M,L) if M ∼= L,

0 if M ̸∼= L.
(3.7)

Moreover,

Den(M,L) = n(M,L) · Den(M,M),

where for two lattices M,L ⊂ V of rank n, n(M,L) = |{L′ ⊂ LF | L ⊂ L′, L′ ∼= M}|.

Corollary 3.8. Assume L ̸∼= Λt for any vertex lattice Λt with t < h. Then

∂Pdenn,h(L) = Pden′
n,h(L).

Corollary 3.9. Let cn,t be the coefficients in (3.5) with even t and 0 < t ≤ tmax. Then

cn,t = −Pden′
n,h(Λt).

Proof. On the one hand, combining Corollary 3.6 with (3.5), we obtain

∂Pdenn,h(Λt) = 0.

On the other hand, by Lemma 3.7 and (3.4),

∂Pdenn,h(Λt) = Pden′
n,h(Λt) + cn,t.

□

We will give another formulation of the conjecture 3.3 (conjecture 7.7) in §7 which is based on
the duality between N [h]

n and N [n−h]
n , and is in fact more general (it takes care of the intersections

between Z-cycles and Y-cycles). The main terms of these two formulations are the same by direct
calculations. However, interestingly, it is not clear that these two formulations have the same
correction terms from the definition.

4. Our strategy: N [2]
4

Our general strategy is closest to the unramified unitary case [LZ22a] since N [0]
n ⊂ N [h]

n+h, and
has several new ingredients which are quite complicated. Therefore, in this section, we consider the
case N [2]

4 and explain our strategy. Indeed, this is the first new case we proved and almost all ideas
are essentially from this case. Therefore, we believe that this section will be helpful for readers.
Since we want to explain our strategy in detail, we will freely use notations from the following
sections.

Let V be the space of special homomorphisms (dimension 4), and let L♭ ⊂ V be an OF -lattice of
rank 3. For any lattice L′♭ such that L♭ ⊂ L′♭ ⊂ (L′♭)∨ ⊂ L♭

F , we define the primitive part Z(L′♭)◦

of the special cycle Z(L′♭) inductively by setting

Z(L′♭)◦ := Z(L′♭) −
∑

L′♭⊂L′′♭

L′′♭⊂(L′′♭)∨⊂L′♭
F

Z(L′′♭)◦.
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Then, for x ∈ V\L♭
F , the Kudla-Rapoport conjecture (Conjecture 7.6) is equivalent to

IntL′♭◦(x) := χ(N [2]
4 , LZ(L′♭)◦ ⊗L OZ(x)) =

∑
L′♭⊂L′⊂L′∨,L′∩L♭

F =L′♭

D4,2(L′)1L′(x) =: ∂Den4,2
L′♭◦(x),

where D4,2(L′) is the Cho-Yamauchi constant for N [2]
4 (Definition 8.3).

The first step is decomposing IntL′♭◦(x) and ∂Den4,2
L′♭◦(x) into horizontal and vertical parts:

IntL′♭◦(x) = IntL′♭◦,H (x) + IntL′♭◦,V (x),
∂Den4,2

L′♭◦(x) = ∂Den4,2
L′♭◦,H

(x) + ∂Den4,2
L′♭◦,V

(x).

In the case of the good reduction N [0]
n , this decomposition is relatively simple: if L′♭ has the funda-

mental invariants (0, 0, . . . , 0, α), α ≥ 1, then IntL′♭◦(x) and ∂Den4,2
L′♭◦(x) are horizontal. Otherwise,

IntL′♭◦(x) and ∂Den4,2
L′♭◦(x) are vertical.

However, when h ≥ 1, i.e., in the case of bad reduction, horizontal parts and vertical parts cannot
be separated just by the fundamental invariants of L′♭. Indeed, even in N [1]

2 , Z(L1)◦ (L1 ≃ (π)) is
a sum of horizontal parts and vertical parts. To understand this phenomenon, we did some explicit
computation on the analytic side by using [Cho22a]: for Lβγδ ∈ V of rank 3 with fundamental
invariants (δ, γ, β), and x ∈ V\(Lβγδ)F with val((x, x)) = α ≥ β ≥ γ ≥ δ, we have

∂Den4,2
L◦

100
(x) = α/2, ∂Den4,2

L◦
300

(x) = (q2 + q)α/2 + 1 − q2,

∂Den4,2
L◦

311
(x) = (q7 + q6)α/2 − (q7 − q5 − 1), ∂Den4,2

L◦
210

(x) = q3 − q + 1,
∂Den4,2

L◦
221

(x) = −(q2 − 1)(q2 − q + 1)(q3 + q2 + q + 1),
∂Den4,2

L◦
331

(x) = −(q2 − 1)(q6 + q5 + q4 + 2q3 + q2 + 1),
∂Den4,2

L◦
322

(x) = −(q2 − 1)(q2 − q + 1)(q4 + 2q3 + q2 + q + 1),
...

The most interesting thing in this computation is the fact that ∂Den4,2
L◦

βγδ
(x) does not depend on

α if (β, γ, δ) ̸= (β, 0, 0), (β, 1, 1). A similar phenomenon happens in the case of N [0]
n for vertical

components since these are locally constant. Therefore, it is reasonable to guess that the horizontal
parts of Z(L♭) are contained in Z(Lβγδ)◦s for (β, γ, δ) = (β, 0, 0), (β, 1, 1) (which turns out to be
true by Theorem 5.3). Since Z(Lβ00)◦,Z(Lβ11)◦ have some vertical parts too, it should be handled
carefully. Anyway, horizontal parts can be understood in this way, so for now, let us focus on the
cases where (β, γ, δ) ̸= (β, 0, 0), (β, 1, 1).

Now, we guessed that Z(Lβγδ)◦ is purely vertical if (β, γ, δ) ̸= (β, 0, 0), (β, 1, 1). The next step
is to understand the Fourier transforms”IntL◦

βγδ
,V (x) guess= ”IntL◦

βγδ
(x),’∂Den

4,2
L◦

βγδ
,V (x) guess= ’∂Den

4,2
L◦

βγδ
(x),

for x ⊥ Lβγδ, val((x, x)) < 0. In the case of good reduction N [0]
n , both”IntL′♭◦,V (x) and ’∂Den

n,0
L′♭◦,V (x)

vanish when val((x, x)) < 0, and hence

(4.1) ”IntL′♭◦,V (x) − ’∂Den
n,0
L′♭◦,V (x) = 0, for val((x, x)) < 0.
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Since (4.1) is the most crucial property to prove the Kudla-Rapoport conjecture inductively, we
have to show that (4.1) holds in our cases.

In N [2]
4 , we still have that ’∂Den

4,2
L◦

βγδ
(x) = 0 if val((x, x)) ≤ −2, but ’∂Den

4,2
L◦

βγδ
(x) is not zero for

val((x, x)) = −1 (see Theorem 10.18, Theorem 10.20, Theorem 10.19, Theorem 10.21, Theorem
11.2). Indeed, we can compute that for val((x, x)) = −1,’∂Den

4,2
L◦

444
(x) = 1

q2 (q2 − 1)(q3 + 1), ’∂Den
4,2
L◦

431
(x) = − 1

q2 (q + 1)(q3 − q + 1),’∂Den
4,2
L◦

440
(x) = 1

q2 (q2 − 1), ’∂Den
4,2
L◦

310
(x) = − 1

q2 .

What is the meaning of these numbers? This is the main obstruction when we try to prove the
conjecture. Since we cannot compute the geometric side directly, it is not possible to prove the
conjecture without knowing the meaning of these numbers.

Fortunately, we had a table of the Cho-Yamauchi constants D3,1(L):

D3,1(L444) = −(q2 − 1)(q3 + 1), D3,1(L431) = (q + 1)(q3 − q + 1),
D3,1(L440) = −(q2 − 1), D3,1(L310) = 1.

Now, it is easy to see that

(4.2) ’∂Den
4,2
L◦

βγδ
(x) = − 1

q2D3,1(Lβγδ).

This is the most important observation in our work since this gives the following crucial ideas.
First, note that ’∂Den

4,2
L◦

βγδ
(x) is a certain linear sum of the Cho-Yamauchi constants D4,2(L) for

N [2]
4 and the right-hand side of (4.2) is the Cho-Yamauchi constants D3,1(L) for N [1]

3 . This suggests
that there should be certain inductive relations among Dn,h(L) and Dn−1,h−1(L), ∀0 ≤ h ≤ n

(see Theorem 9.4). Since the Cho-Yamauchi constants for N [h]
n are very complicated (for example,

D6,2(L) = (q−1)(q+1)3(q2 −q+1)(q13 −q12 +q11 +q10 −2q9 +3q8 −3q7 +q6 −2q4 +2q3 −2q2 +q−1)
for a lattice L with fundamental invariants (1, 1, a4, a3, a2, a1), ai ≥ 2), we may not be able to find
these inductive relations without the above observation (4.2).

These inductive relations are the most important ingredients to understand the analytic side and
by using them, we have a quite complete understanding on the analytic side of the Kudla-Rapoport
conjecture for N [h]

n , ∀0 ≤ h ≤ n.
Second, note that the right-hand side of (4.2) is the Cho-Yamauchi constant for N [1]

3 , not
N [2]

3 . Also, note that we need a Y -cycle to get a reduction from N [2]
4 to N [1]

3 (see Proposi-
tion 2.6). This means that Y -cycles appear when we take the Fourier transform of IntL◦

βγδ
(x) =

χ(N [2]
4 , LZ(L◦

βγδ) ⊗L OZ(x)). Indeed, the Kudla-Rapoport conjecture for N [1]
3 holds, therefore,

D3,1(Lβγδ) = χ(N [2]
4 , LZ(Lβγδ)◦ ⊗L OY(x)), val((x, x)) = −1.

Therefore, (4.2) suggests that¤�
χ(N [2]

4 , LZ(Lβγδ)◦ ⊗L OZ(x)) = ”IntL◦
βγδ

(x)
conjecture= ’∂Den

4,2
L◦

βγδ
(x) = − 1

q2D3,1(Lβγδ) = − 1
q2χ(N [2]

4 , LZ(Lβγδ)◦ ⊗L OY(x)).
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If we can prove this relation, then we can show that (4.1) holds for all val(x, x) < 0, and we can
use an inductive argument to prove the Kudla-Rapoport conjecture for N [2]

4 .
By [LZ22a, Lemma 6.3.1] and [Zha22, Theorem 8.1], we know that¤�

χ(N [2]
4 , OC ⊗L OZ(x)) = − 1

q2χ(N [2]
4 , OC ⊗L OY(x)),

if C is a Deligne-Lusztig curve or P1. Therefore, if Z(Lβγδ)◦ is a linear sum of Deligne-Lusztig
curves or P1 (in the Grothendieck group of coherent sheaves), then we have¤�

χ(N [2]
4 , LZ(Lβγδ)◦ ⊗L OZ(x)) = − 1

q2χ(N [2]
4 , LZ(Lβγδ)◦ ⊗L OY(x)).

This is how we make the Conjecture 6.3 (this can be regarded as a variant of Tate conjectures
for certain Deligne-Lusztig varieties), and we prove that if Conjecture 6.3 holds, then the Kudla-
Rapoport conjecture holds (see Theorem 11.4). Then, we prove that Conjecture 6.3 holds for N [2]

4
and some other cases (see Theorem 6.5). This is how we prove the Kudla-Rapoport conjecture for
N [2]

4 .

5. Horizontal parts of Kudla–Rapoport cycles

In this section, we describe the horizontal parts of special cycles following the approach of
[LZ22a, §4]. Due to the existence of non-trivial level structures, there are some new phenomena.

Let K denote a finite extension of F̆ . Consider z ∈ N [h]
n (OK) which corresponds to an OF -

hermitian module G of signature (1, n − 1) over OK . Let Tp(−) denote the integral p-adic Tate
modules and

L := HomOF
(TpE , TpG).

We can associate L with a hermitian form {x, y} given by

(TpE x→ TpG
λG−→ TpG

∨ y∨
−→ TpE∨ λ∨

E−→ TpE) ∈ EndOF
(TpE) ∼= OF .

One can check that L is represented by the hermitian matrix Diag((1)n−h, (π)h).
Following [LZ22a, §4], we consider two injective OF -linear isometric homomorphisms

iK : HomOF
(E , G)F → LF ,

and
ik̄ : HomOF

(E , G)F → V.

By [LZ22a, Lemma 4.4.1], we have

HomOF
(E , G) = i−1

K (L).(5.1)

By the definition of special cycles, for any OF -lattice M ⊂ V, we have z ∈ Z(M)(OK) if and
only if M ⊂ ik̄(HomOF

(E , G)). By (5.1), z ∈ Z(M)(OK) if and only if

M ⊂ ik̄(i−1
K (L)).(5.2)

Now assume that z ∈ Z(L♭)(OK) corresponds to an OF -hermitian moduleG of signature (1, n−1)
over OK . By (5.2), we have

L♭ ⊂ ik̄(i−1
K (L)).
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Define M ♭ := L♭
F ∩ ik̄(i−1

K (L)). By (5.2), we still have z ∈ Z(M ♭)(OK). Moreover, we have

M ♭ ∼−→ L ∩ iK(i−1
k̄

(L♭
F )).

Set W = iK(i−1
k̄

(L♭
F )), which has the same dimension as L♭

F .

Definition 5.1. Define H(V) to be the collection of OF -lattices M ♭ ⊂ V of rank n− 1 such that

M ♭ ≈ Diag((1)n−h, (π)h−2, (πa)) with a ∈ Z>0 or M ♭ ≈ Diag(1n−h−2, (π)h, (πa)) with a ∈ Z≥0.

Definition 5.2. For any lattice L′♭ such that L♭ ⊂ L′♭ ⊂ (L′♭)∨ ⊂ L♭
F , we define the primitive part

Z(L′♭)◦ of the special cycle Z(L′♭) inductively by setting

Z(L′♭)◦ := Z(L′♭) −
∑

L′♭⊂L′′♭

L′′♭⊂(L′′♭)∨⊂L′♭
F

Z(L′′♭)◦.

Moreover, we define Y(L′♭)◦ similarly.

Theorem 5.3. Let L♭ ⊆ Vn be a hermitian OF -lattice of rank n− 1. Then

Z(L♭)H =
⋃

L♭⊆M♭,

M♭∈H(V)

Z(M ♭)◦
H .

Moreover, we have the following.
(1) If M ♭ ≈ Diag((1)n−h, (π)h−2, (πa)) with a ∈ Z>0, then Z(M ♭)H

∼= Z(M ♭) ≃ Z(x) ⊂ N [0]
2

with val(x) = a− 1, which is a quasi-canonical lifting of degree a− 1.
(2) If M ♭ ≈ Diag(1n−h−2, (π)h, (πa)) with a ∈ Z≥0, then

Z(M ♭)◦
H =

∑
M♭⊂M1⊕N2⊂π−1M♭

N2≈(π−1)h

Z(M1)◦ · Y(N2)◦.

Here, each Z(M1)◦ · Y(N2)◦ is a quasi-canonical lifting of degree a. The summation index
has cardinality: 

q2n−2 if a ≥ 1,

q2n−2 1 − (−q)−n

1 − (−q)−1 if a = 0.

The rest of this section is devoted to the proof of Theorem 5.3. We give the proof at the end of
this section after some preparations.

First, by the similar method as in the appendix of [HSY23], we can prove the following two
lemmas.

Lemma 5.4. Assume L = L1 k L2 where L1 ≈ (1)n−h and L2 ≈ (π)h. Let x be a primitive vector
in L.

(1) If PrL1(x) is primitive in L1, then there exists L′
1 ≈ (1)n−h such that x ∈ L′

1.
(2) If PrL1(x) is not primitive in L1, then there exists L′

1 ≈ (1)n−h and L′
2 ≈ (π)h such that

L = L′
1 k L′

2 and x ∈ L′
2.
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Lemma 5.5. Assume L ≈ (1)n−h or (π)h. Then for any primitive vectors x, x′ ∈ L with q(x) =
q(x′), there exists g ∈ U(L) such that g(x) = x′.

With the help of the above two lemmas, we can prove the following.

Lemma 5.6. Assume L is a hermitian lattice represented by Diag((1)n−h, (π)h) and W ⊂ LF is a
subspace of dimension n− 1. Then M ♭ := W ∩ L is represented either by Diag(1n−h−2, (π)h, (πa))
with a ∈ Z≥0 or Diag((1)n−h, (π)h−2, (πa)) with a ∈ Z>0. In the first case, we can write M ♭ =
M1 kM2 such that L = L1 kM2.

Proof. First, we assume M ♭
1 := M ♭ ∩ L1,F is not unimodular. Then the rank of L1 is at least

2 and we choose a basis {e1, . . . , en−h} of L1 such that e1, e2 ∈ L1 and (e1, e1) = (e2, e2) = 0,
(e1, e2) = 1 and (ei, ej) = 0 for i, j > 2, i ̸= j. Since M ♭

1 is primitive in L1 but non-isometric to
L1, we know the rank of M ♭

1 is smaller than n − h. Hence the rank of M ♭
1 has to be n − h − 1

and M ♭
2 := M ♭ ∩ L2,F = L2. Now we choose a orthogonal basis {x1, . . . , xn−h−1} of M ♭

1, where
we assume q(x1) = (x1, x1) has largest valuation among {q(x1), . . . , q(xn−h−1)}. In particular,
val(q(x1)) > 0. By Lemmas 5.4 and 5.5, we may assume x1 = e1 + q(x1)

2 e2. Since M ♭
1 is primitive,

we can write xi = ai(e1 − q(x1)
2 e2) + ∑n−h

j=3 aijej and for each j with 3 ≤ j ≤ n − h, there exists
an i such that aij is a unit. Hence by possibly choosing a different basis {x2, . . . , xn−h−1}, we may
assume xi = ai(e1 − q(x1)

2 )e2) + ei+1. Now it is clear that Span{x2, . . . , xn−h−1} is unimodular and
M ♭ ≈ Diag((1)n−h−2, (π)h, (πa)).

Now we assume M ♭
1 := M ♭∩L1,F is unimodular. If rankM ♭

1 = n−h−1, then an argument as above
shows that M ♭ ≈ Diag((1)n−h−1, (π)h). If If rankM ♭

1 = n− h, then rankM ♭
2 = h− 1, and a similar

argument as before shows that M ♭
2 ≈ (π)h−2k(πa) with a ∈ Z>0. Then M ♭ ≈ (1)n−hk(π)h−2k(πa)

and (1)n−h−1 k (π)h respectively. □

In particular, Lemma 5.6 implies that if z ∈ Z(L♭)(OK), then z ∈ Z(M ♭)(OK) whereM ♭ ∈ H(V).
Now we assume z ∈ Z(L♭)(OK) corresponds to a M ♭ represented by (1)n−h−2 k (πa) k (π)h. By

Proposition 2.7, we may reduce to the case M ♭ represented by (πa) k (π)h.

Proposition 5.7. Assume z ∈ Z(L♭)(OK) corresponds to a M ♭ = M1 k M2, where M1 is repre-
sented by (πa) and M2 is represented by (π)h. If L = L1 kM2, then z ∈ Z(M1)◦ · Y(π−1M2)◦.

Proof. First, notice that z ∈ Z(M ♭)◦ essentially by the definition of M ♭. We may choose a basis
{x1, x2} of L1 and a basis {x3, · · · , xh+2} of M2 such that the moment matrix of {x1, x2} and
{x3, · · · , xh+2} is (1)2 and (π)h. Let

Lz∨ := HomOF
(TpE , TpG

∨).

Composing L with λG, we obtain an embedding L ↪→ Lz∨ such that Lz∨ = λG(L1) k π−1λG(M2).
Moreover, the moment matrix of λG(L1) k π−1λG(M2) is (π)2 k (1)h. We can also directly check
that Lz∨ ∩λG(iK(i−1

k̄
(L♭

F ))) = M1 kπ−1λG(M2). Hence, z ∈ Z(M1)◦ ·Y(π−1M2)◦ by the definition
of special cycles. □

Lemma 5.8. Assume M ♭ = M1 kM2 = M ′
1 ⊕M2. Then

Z(M1)◦ · Y(π−1M2)◦ = Z(M ′
1)◦ · Y(π−1M2)◦.
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Proof. First of all, we have Z(M1)◦ ·Y(π−1M2)◦ ⊂ Z(M1)◦ ·Z(M2)◦ = Z(M ′
1)◦ ·Z(M2)◦ ⊂ Z(M ′

1)◦.

Hence, Z(M1)◦ · Y(π−1M2)◦ ⊂ Z(M ′
1)◦ · Y(π−1M2)◦. By switching the role of M1 and M ′

1, the
lemma is proved. □

Lemma 5.9. Let M ♭ = M1 k M2, where M1 = span{x0}, and M2 has a basis {x1, · · · , xh} with
moment matrix (π)h. Assume M ♭ ⊂ N ♭ ⊂ π−1M ♭ and N ♭ ≈ Diag(πa, (π−1)h). Then N ♭ =
M1 ⊕ span{π−1(x1 + α1x0), · · · , π−1(xh + αhx0)}, where αi is a representative of OF /(π).

Proof. Since M ♭ ≈ Diag(πa, (π)h) and N ♭ ≈ Diag(πa, (π−1)h), N ♭ must contain a sub-lattice of the
form span{π−1(x1 + α1x0), · · · , π−1(xh + αhx0)}. Moreover, we have M ♭ h

⊂ N ♭ ⊂ π−1M ♭.
Notice that M ♭ h

⊂ M1 ⊕ span{π−1(x1 + α1x0), · · · , π−1(xh + αhx0)} ⊂ N ♭. Hence N ♭ = M1 ⊕
span{π−1(x1 + α1x0), · · · , π−1(xh + αhx0)}. □

Lemma 5.10. Assume M ♭ = M1 k M2 with basis {x0, x1, · · · , xh} as in Lemma 5.9. Let N ♭

and (N ♭)′ be two different lattices such that M ♭ ⊂ N ♭ ⊂ π−1M ♭, M ♭ ⊂ (N ♭)′ ⊂ π−1M ♭, and
N ♭ ≈ (N ♭)′ ≈ Diag(πa, (π−1)h). Write N ♭ = M1 ⊕N2 and (N ♭)′ = M1 ⊕N ′

2. Then

Z(M1)◦ · Y(N2)◦(OK) ̸= Z(M1)◦ · Y◦(N ′
2)(OK).

Proof. Let N ♭ = M1 ⊕span{π−1(x1 +α1x0), · · · , π−1(xh +αhx0)} and (N ♭)′ = M1 ⊕span{π−1(x1 +
α′

1x0), · · · , π−1(xh+α′
hx0)} where αi and α′

i are representatives ofOF /(π). If Z(M1)◦·Y(N2)◦(OK) =
Z(M1)◦ · Y◦(N ′

2)(OK), then we have nontrivial z ∈ Z(M1)◦ · Y(N2)◦(OK) ∩ Z(M1)◦ · Y◦(N ′
2)(OK).

This implies that z ∈ Y(π−1M1). In particular, z ∈ Y(π−1M1) · Y(span{π−1x1, · · · , π−1xh})(OK).
However, notice that

Y(π−1M1) · Y(span{π−1x1, · · · , π−1xh}) ∼= Z(π−1M1) · Y(span{π−1x1, · · · , π−1xh})

by cancellation law and the fact that Z(π−1M1) = Y(π−1M1) in N2. This contradicts the fact
z ̸∈ Z(π−1M1)◦. □

Proof of Theorem 5.3. Assume z ∈ Z(M ♭)◦(OK). By Lemma 5.6, we know that z ∈ Z(M ♭)(OK)
where M ♭ ∈ H(V).

If M ♭ = M1 kM2, where M1 ≈ (1)n−h and M2 ≈ Diag((π)h−2, (πa)) with a > 0, then according
to Proposition 2.7, Z(M ♭) ∼= Z(M2) ⊂ N [h]

h . Then applying the duality between N [h]
h and N [0]

h , we
have Z(M2) ⊂ N [h]

h is isomorphic to Z(M ′
2) ⊂ N [0]

h , where M ′
2

∼= Diag((1)h−2, (πa−1)). Then by
Proposition 2.7 and [KR11, Proposition 8.1], Z(M ♭)◦ is isomorphic to a quasi-canonical lifting of
degree a− 1.

Now we assume M ♭ ≈ Diag(1n−h−2, (π)h, (πa)) with a ∈ Z≥0. Then according to Proposition
5.7, and Lemma 5.9, we have z ∈ Z(M1)◦ · Y(N2)◦(OK) for some N2, where N2 = span{π−1(x1 +
α1x0), · · · , π−1(xh+αhx0)} and each αi is some representative of OF /(π). IfM1 ∼= Diag(1n−h−2, πa)
and M2 ∼= (π)h, then by Proposition 2.7 and [KR11, Proposition 8.1] again, Z(M1)◦ · Y(π−1M2)◦

is isomorphic to a quasi-canonical lifting of degree a.
According to the above discussion, we have

Z(L♭)H =
⋃

L♭⊆M♭,

M♭∈H(V)

m(M ♭)Z(M ♭)◦
H ,(5.3)
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and Z(M ♭)◦
H has the desired description.

Now we show m(M ♭) = 1 for any M ♭ in the above identity following the proof of [LZ22a, Theorem
4.2.1] closely. It suffices to show OK [ϵ]-points of both sides of (5.3) are the same where ϵ2 = 0.
First, each OK-point of the right hand side of (5.3) has a unique lift to an OK [ϵ]-point. Therefore
we only need to show each z ∈ Z(M ♭)◦

H (OK) has a unique lift in Z(M ♭)◦
H (OK [ϵ]).

Let G be the corresponding OF -hermitian module of signature (1, n−1) over OK and D(G) be the
(covariant) OF0-relative Dieudonné crystal of G. First, we have an action OF ⊗OF0

OK ≃ OK ⊕OK

on D(G)(OK) induced by the action of OF via ι : OF → End(G), and hence a Z/2Z-grading on
D(G)(OK). Then we let A = gr0 D(G)(OK). It is a free OK-module of rank n equipped with an
OK-hyperplane: H := Fil1 D(G)(OK) ∩ A by the Kottwitz signature condition. Note that H

contains the image of L♭ under the identification of [KR11, Lemma 3.9].
Note that the kernel of OK [ϵ] → OK has a natural nilpotent divided power structure. Then

according to Grothendieck-Messing theory, a lift z̃ ∈ Z(L♭)(OK [ϵ]) of z corresponds to an OK [ϵ]
direct summand of D(G)(OK [ϵ]) F̃il that lifts Fil1D(G) and contains the image of L♭ in Ã . Here, F̃il
is isotropic under the natural pairing ⟨ , ⟩D(G)(OK [ϵ]) on D(G)(OK [ϵ]) induced by the polarization.
Since L♭ ⊂ HomOF

(E , G) has rank n − 1, by Breuil’s theorem [LZ22a, §4.3], we know that the
image of L♭ in gr0 D(G)(S) has rank n − 1 over S (the Breuil’s ring) and thus its image in the
base change A has rank n− 1 over OK . In particular, gr0F̃il is the unique OK [ϵ]-hyperplane ›H of
gr0D(G)(OK [ϵ]) that contains the OK [ϵ]-module spanned by the image of L♭ in Ã .

To determine gr1F̃il, we note that F̃il is a direct summand of D(G)(OK [ϵ]) with rank n containing›H . Since F̃il is isotropic under ⟨ , ⟩D(G)(OK [ϵ]), we have gr1F̃il ⊂ ( ›H )⊥ ∩ gr1D(G)(OK [ϵ]). Here
( ›H )⊥ is the perpendicular subspace in D(G)(OK [ϵ]) with respect to ⟨ , ⟩D(G)(OK [ϵ]). Moreover, since
det⟨ , ⟩D(G)(OK [ϵ]) ̸= 0 in OK [ϵ], we have ( ›H )⊥ has rank n + 1. Note that gr0D(G)(OK [ϵ]) is also
isotropic under ⟨ , ⟩D(G)(OK [ϵ]). In particular, gr0D(G)(OK [ϵ]) ⊂ ( ›H )⊥ which has rank n. Hence
( ›H )⊥ ∩ gr1D(G)(OK [ϵ]) is of rank one. Since F̃il is a direct summand of D(G)(OK [ϵ]), we know
gr1F̃il = ( ›H )⊥ ∩ gr1D(G)(OK [ϵ]). Hence F̃il = gr0F̃il ⊕ gr1F̃il is uniquely determined, and the lift
z̃ ∈ Z(L♭)(OK [ϵ]) of z is unique. Hence F̃il = gr0F̃il ⊕ gr1F̃il is uniquely determined, and the lift
z̃ ∈ Z(L♭)(OK [ϵ]) of z is unique.

We defer the proof of the cardinality of the summation index to Lemma 10.22, where it is proved
via analytic method. □

6. Local modularity and Tate conjectures

First, as we have discussed in the introduction, we propose the following local modularity con-
jecture motivated by the analytic computation and the special case for N [0]

n (see [LZ22a, Corollary
5.3.3]).

Conjecture 6.1. For the Rapoport-Zink space N [h]
n and an OF -lattice L♭ ⊂ V of rank n − 1, we

have ”IntL♭,V (Z(x)) = − 1
qh

IntL♭,V (Y(x)).
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Remark 6.2. More precisely, as we wrote in Section 4, Conjecture 6.1 is primarily motivated by
(4.2) and, more generally, by Theorem 11.2 below along with [LZ22a, Lemma 6.3.1] and [Zha22,
Theorem 8.1].

Conjecture 6.3. (cf. [LZ22a, Corollary 5.3.3]) For the Rapoport-Zink space N [h]
n and an OF -lattice

L♭ ⊂ V of rank n− 1, there are finitely many Deligne-Lusztig curves Ci ⊂ N [0]
3 ↪→ N [h]

n , projective
lines Di ⊂ N [1]

2 ↪→ N [h]
n and multCi, multDi ∈ Q such that for any x ∈ V\L♭

F ,

χ(N [h]
n , LZ(L♭)V ⊗L OZ(x)) =

∑
i

multCiχ(N [h]
n , OCi ⊗L OZ(x)) +

∑
i

multDiχ(N [h]
n , ODi ⊗L OZ(x)).

Remark 6.4. Indeed, as we wrote in Section 4, Conjecture 6.1 follows from Conjecture 6.3. Con-
jecture 6.3 is implied by a stronger version of Tate conjectures on 1-cycles for Deligne–Lusztig
varieties YΛ in Proposition 6.6 (cf. [LZ22a, Theorem 5.3.2]).

Theorem 6.5. Conjecture 6.3 holds for N [0]
n ,N [1]

n ,N [n−1]
n ,N [n]

n , and N [2]
4 .

To prove this theorem, we follow [LZ22a, Section 5.3]. First, we need to recall several notations
and theorems from [Cho18]. In [Cho18, Theorem 1.1], we proved that the reduced subscheme of
N [h]

n has a Bruhat-Tits stratification and their components are certain Deligne-Lusztig varieties YΛ
where Λ is a vertex lattice of type t(Λ). More precisely, we have the following proposition.

Proposition 6.6. [Cho18, Theorem 1.1] Let N [h]
n,red be the underlying reduced subscheme of N [h]

n .
Then, we have

N [h]
n,red = ∪t(Λ)≤h−1YΛ ∪ ∪t(Λ)≥h+1YΛ,

where YΛ denotes certain Deligne-Lusztig varieties associated with vertex lattices Λ. Also, the
dimension of YΛ is 1

2(t(Λ) +h− 1) (resp. 1
2(t(Λ) +n−h− 1)) if t(Λ) ≥ h+ 1 (resp. t(Λ) ≤ h− 1).

By [LZ22a, Corollary 5.3.3], we know that the Conjecture 6.3 holds for N [0]
n and N [n]

n . Also, by
[Cho18, Theorem 1.1], the irreducible components of the reduced subscheme of N [2]

4 are P2 and
their Chow groups are well-known. Therefore, let us focus on N [1]

n ,N [n−1]
n . Since N [1]

n is isomorphic
to N [n−1]

n , we only need to consider N [1]
n . In this case, by Proposition 6.6 (see [Cho18, Theorem 1.1]

for more detail), we know that the reduced subscheme of N [1]
n has a Bruhat-Tits stratification and

their components are Deligne-Lusztig varieties YΛ where t(Λ) ≥ 2 or projective spaces Pn
Λ, where

t(Λ) = 0. Let us describe YΛ more precisely.
Let kF be the residue field of F and let V2d+h+1 be the unique (up to isomorphism) kF /k-

hermitian space of dimension 2d + h + 1. Let Λ/πΛ∨ = V2d+h+1 where t(Λ) = 2d + h + 1, and
let J2d+h+1 be the special unitary group associated to (V2d+h+1, (·, ·)). Let (W2d+h+1, S2d+h+1) be
the Weyl system of J2d+h+1 and let B2d+h+1 be the standard Borel subgroup. Let F : J2d+h+1 →
J2d+h+1 be the Frobenius morphism over k = Fq. For I ⊂ S2d+h+1, we define WI as the subgroup
of W2d+h+1 generated by I and PI := B2d+h+1WIB2d+h+1. Note that W2d+h+1 can be identified
with a symmetric group S2d+h+1 with {s1, . . . , s2d+h} where si is the transposition of i and i + 1.
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We write

I0 :=
®

{s1, . . . sd, sd+2, . . . , s2d+1}, if h = 1
{s1, . . . sd, sd+2, . . . , sd+h, sd+h+2 . . . , s2d+h}, if h > 1

,

Ii :=
®

{s1, . . . , sd−i, sd+i+2, . . . , s2d+1}, 1 ≤ i ≤ d, if h = 1
{s1, . . . sd−i, sd+2, . . . , sd+h, sd+h+i+2 . . . , s2d+h}, 1 ≤ i ≤ d if h > 1

,

Pi := PIi ,

wΛ := sd+1sd+2 . . . sd+h.

Also, for I ⊂ S2d+h+1 and w ∈ W2d+h+1, we define the Deligne-Lusztig variety XI(w) by

XI(w) := {g ∈ J2d+h+1/PI |g−1F(g) ∈ PIwPF(I)}.

Finally, we define YΛ by YΛ := XI0(wΛ) = XI0(id) ⊔XI0(wΛ) (see [Cho18, Definition 3.10]). Then,
we have the following proposition.

Proposition 6.7. YΛ is smooth.

Proof. Note that YΛ is smoothly equivalent to the closure of P0wΛF(P0)/F(P0) ⊂ J2d+h+1/F(P0),
a Schubert variety in the partial flag variety J2d+h+1/F(P0) ([GHN24, Section 7.1]). Also, this is
smoothly equivalent to its inverse image in J2d+h+1/B2d+h+1, the Schubert variety for the maximal
element in P0wΛF(P0) ([GHN24, Section 7.2]). Now, by [LS90, Theorem 1] or [BL00, Theorem
8.1.1], it suffices to show that the maximal element in P0wΛF(P0) avoids the patterns 3412, 4231.
By the balls-in-boxes picture for wΛ ([BKP+18, Section 3.2]), we can compute that the maximal
element in P0wΛF(P0) isÇ

1 2 . . . d d+ 1 . . . d+ h d+ h+ 1 d+ h+ 2 . . . 2d+ h 2d+ h+ 1
d+ 1 d . . . 2 d+ h+ 1 . . . d+ 2 2d+ h+ 1 2d+ h . . . d+ h+ 2 1

å
.

It is now easy to see that this element avoids the patterns 3412, 4231, and hence YΛ is smooth. □

Now, assume that h = 1. In this case, we have that Pd = B2d+2. Also, note that the elements in
J2d+2/Pi parametrize flags

0 ⊂ T−i
1
⊂ T−i+1 . . .

1
⊂ T−1

1
⊂ A

1
⊂ B

1
⊂ T1 . . .

1
⊂ Ti ⊂ V2d+2.

Now, by [Cho18, Theorem 1.1], we know that the reduced subscheme of N [1]
n is

(6.1) N [1]
n,red = ∪Λ,t(Λ)≥2YΛ ∪ ∪Λ,t(Λ)=0Pn

Λ.

Here, YΛ = XP0(id) ⊔XP0(sd+1) where 2d+ 2 = t(Λ)(see [Cho18, Definition 3.10]). By [Cho18,
Lemma 2.21] (cf. [Vol10, Lemma 2.1]), we have the following statement (cf. [Vol10, Theorem 2.15]).

Proposition 6.8. (cf. [Vol10, Theorem 2.15]) There is a decomposition of XP0(id) ⊔ XP0(sd+1)
into a disjoint union of locally closed subvarieties

XP0(id) ⊔XP0(sd+1) = ⊔d
i=0{XPi(sd+2 . . . sd+i+1) ⊔XPi(sd+1sd+2 . . . sd+i+1)}.

Proof. We can follow the proof of [Vol10, Theorem 2.15] with [Cho18, Lemma 2.21]. □
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Since Pd = B2d+2, we have that XPd
(sd+2 . . . s2d+1) and XPd

(sd+1sd+2 . . . s2d+1) are classical
Deligne-Lusztig varieties. For 0 ≤ i ≤ d, let us write

X◦
i,1 := XPi(sd+1 . . . sd+i+1),

X◦
i−1,2 := XPi(sd+2 . . . sd+i+1),

Y ◦
i,1 := XB2i+2(si+1 . . . s2i+1),
Y ◦

i−1,2 := XB2i+2(si+2 . . . s2i+1),‹X◦
i := X◦

i,1 ⊔X◦
i,2,‹Xi := ⊔i

m=0
‹X◦

i ,

Yd := ⊔d
i=0{XPi(sd+2 . . . sd+i+1) ⊔XPi(sd+1sd+2 . . . sd+i+1)}.

Then, by the above proposition and a Bruhat-Tits stratification in [Cho18, Theorem 1.1], we
have that X◦

i,1 (resp. X◦
i,2) is a disjoint union of isomorphic copies of Y ◦

i,1 (resp. Y ◦
i,2). Also, the

dimensions of Y ◦
i,1 and Y ◦

i,2 are i+ 1.
For any kF -variety S, we write Hj(S)(i) for Hj(Sk,Ql(i)) where l ̸= p is a prime and k is an

algebraically closed field containing kF . Let F = FrkF
be the q2-Frobenius on Hj(S)(i). Then, the

following analogous statement of [LZ22a, Lemma 5.3.1] holds.

Lemma 6.9. (cf. [LZ22a, Lemma 5.3.1]) For any d, i ≥ 0 and s ≥ 1, the action of F s on the
following cohomology groups are semisimple, and the space of F s-invariants is zero when j ≥ 1.

(1) H2j(Y ◦
d,1)(j).

(2) H2j(Y ◦
d−1,2)(j).

(3) H2j(‹X◦
i )(j).

(4) H2j(Yd − ‹Xi)(j).

Proof. Here, we follow the proof of [LZ22a, Lemma 5.3.1] with some modification.
(1) By [Lus76, (7.3) (2A2d+1,F )] (or we refer to the proof of [Ohm10, Lemma 2]), we have the

following table on the eigenvalues of F on Hj
c (Y ◦

d,1).

j d+ 1 d+ 2 d+ 3 . . . 2d− 1 2d 2d+ 1 2d+ 2
1 q2 q4 . . . q2d−4 q2d−2 q2d q2d+2

−q3 −q5 −q7 . . . −q2d−1 .

By the Poincaré duality, we have a perfect pairing

H2d+2−j
c (Y ◦

d,1) ×Hj(Y ◦
d,1)(d+ 1) → H2d+2

c (Y ◦
d,1)(d+ 1) ≃ Ql.

Therefore, the eigenvalues of F on H2j(Y ◦
d,1)(j) are given by q2(d+1−j) times the inverse of

the eigenvalues in H
2(d+1−j)
c (Y ◦

d,1). More precisely,

H
2(d+1−j)
c (Y ◦

d,1) q2(d+1−j) × the inverse
j = 0 q2d+2 1
j = 1 q2d−2 q2

j ≥ 2 q2d+2−4j ,−q2d−4j+5 q2j ,−q2j−3.

Therefore, the eigenvalue of F s cannot be 1 when j ≥ 1. The semisimplicity of the action
of F s is from [Lus76, 6.1].
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(2) By [Lus76, (7.3) (Ad+1,F )] (or we refer to the proof of [Ohm10, Lemma 2], here, note that
F is q2-Frobenius), we have the following table on the eigenvalues of F on Hj

c (Y ◦
d,2).

j d+ 1 d+ 2 d+ 3 . . . 2d− 1 2d 2d+ 1 2d+ 2
1 q2 q4 . . . q2d−4 q2d−2 q2d q2d+2.

By the Poincaré duality, we have a perfect pairing

H2d+2−j
c (Y ◦

d,2) ×Hj(Y ◦
d,2)(d+ 1) → H2d+2

c (Y ◦
d,2)(d+ 1) ≃ Ql.

Therefore, the eigenvalues of F on H2j(Y ◦
d,2)(j) are given by q2(d+1−j) times the inverse of

the eigenvalues in H
2(d+1−j)
c (Y ◦

d,2). More precisely,

H
2(d+1−j)
c (Y ◦

d,2) q2(d+1−j) × the inverse
j = 0 q2d+2 1
j = 1 q2d−2 q2

j ≥ 2 q2d+2−4j q2j .

Therefore, the eigenvalue of F s cannot be 1 when j ≥ 1. The semisimplicity of the action
of F s is from [Lus76, 6.1].

(3) This follows from (1) and (2) since ‹X◦
i is a disjoint union of Y ◦

i,1 and Y ◦
i,2.

(4) This follows from (3) since Yd − ‹X◦
i = ⊔d

m=i+1
‹X◦

m.
□

Theorem 6.10. (cf. [LZ22a, Theorem 5.3.2]) For any 0 ≤ i ≤ d+ 1 and any s ≥ 1, we have
(1) The space of Tate classes H2i(Yd)(i)F s=1 is spanned by the cycle classes of the irreducible

components of ‹Xi.
(2) Let H2i(Yd)(i)1 ⊂ H2i(Yd)(i) be the generalized eigenspace of F s for the eigenvalue 1. Then

H2i(Yd)(i)1 = H2i(Yd)(i)F s=1.

Proof. The proof is the same as [LZ22a, Theorem 5.3.2] with Lemma 6.9 □

Proof of Theorem 6.5. Here, we follow the proof of [LZ22a, Corollary 5.3.3]. For N [0]
n and N [n]

n , this
is from [LZ22a, Corollary 5.3.3]. For N [1]

n and N [n−1]
n , note that N [1]

n and N [n−1]
n are isomorphic,

so we only need to consider the case N [1]
n . By [Cho18, Theorem 1.1], we have (6.1):

N [1]
n,red = ∪Λ,t(Λ)≥2YΛ ∪ ∪Λ,t(Λ)=0Pn

Λ,

and any curve C in N [1]
n,red lies in some YΛ ≃ Yd or the projective space Pn

Λ for some vertex lattice Λ.
If it lies on Yd, then by Theorem 6.10, the cycle class of C can be written as a Q-linear combination
of the cycle classes of the irreducible components of ‹X1 and these are projective lines. Similarly,
if it lies on Pn

Λ, then by the Chow group of Pn
Λ, we have that the cycle class of C can be written

as a Q-linear combination of projective lines. This finishes the proof of the theorem for N [1]
n and

N [n−1]
n .
For N [2]

4 , we know that the irreducible components of N [2]
4,red are P2

Λ for vertex lattices Λ, and
hence by the description of Chow group of P2

Λ, the cycle class of C can be written as a Q-linear
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combination of projective lines. Moreover, the projective lines here can be realized as images of
embeddings of projective lines in N [1]

2 .
Finally, the finiteness of curves is from Lemma 2.8. This finishes the proof of the theorem. □

7. Weighted representation densities and conjectures

In this section, we first recall the definition of weighted representation densities and formulas
from [Cho22b, Section 3.1]. Then, we will recall the conjectural formula in [Cho22b, Conjecture
3.17, Conjecture 3.25].

We denote by ∗ the nontrivial Galois automorphism of F over F0. We fix the standard additive
character ψ : F0 → C× that is trivial on OF0 . Let V + (resp. V −) be a split (resp. non-split) 2n-
dimensional hermitian vector space over F and let S((V ±)2n) be the space of Schwartz functions
on (V ±)2n. Let Vr,r be the split hermitian space of signature (r, r) and let Lr,r be a self-dual lattice
in Vr,r. Let ϕr,r be the characteristic function of (Lr,r)2n. Let (V ±)[r] be the space V ± ⊗ Vr,r. For
any function ϕ ∈ S((V ±)2n), we define a function ϕ[r] by ϕ⊗ ϕr,r ∈ S(((V ±)[r])2n).

Let Γn be the Iwahori subgroup

Γn := {γ = (γij) ∈ GLn(OF ) | γij ∈ πOF if i > j}.

We define the set Vn(F ) by

Vn(F ) = {Y ∈ Mn,n(F ) | tY ∗ = Y }.

We define the set Xn(F ) by

Xn(F ) = {X ∈ GLn(F ) | tX∗ = X}.

For g ∈ GLn(F ) and X ∈ Xn(F ), we define the group action of GLn(F ) on Xn(F ) by g · X =
gXtg∗. For X,Y ∈ Vn(F ), we denote by ⟨X,Y ⟩ = Tr(XY ). For X ∈ Mm,n(F ) and A ∈ Vm(F ), we
denote by A[X] =t X∗AX. For a hermitian matrix A ∈ Xm(F ), we define

A[r] =
Ç
A

I2r

å
.

Now, let us recall the definition of usual representation densities.

Definition 7.1. For A ∈ Xm(OF ) and B ∈ Xn(OF ), we define Den(A,B) by

Den(A,B) = lim
d→∞

(q−d)n(2m−n)|{x ∈ Mm,n(OF /π
dOF ) | A[x] ≡ B(modπd)}|.

Now, let us recall the definition of weighted representation densities in [Cho22b].

Definition 7.2. [Cho22b, Definition 3.1] Let 0 ≤ h, t ≤ n. Let Lt be a lattice of rank 2n in V + if
t is even (resp. in V − if t is odd) with hermitian form

At :=
Ç
I2n−t

π−1It

å
.

Let 1h,t ∈ S((V ±)2n) be the characteristic function of (L∨
t )2n−h × Lh

t .
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For B ∈ X2n(F ), we define

Wh,t(B, (−q)−2r) :=
∫

V2n(F )

∫
M2n+2r,2n(F )

ψ(⟨Y,A[r]
t [X] −B⟩)1[r]

h,t(X)dXdY.

Here, dY (resp. dX) is the Haar measure on V2n(F ) (resp. M2n+2r,2n(F )) such that∫
V2n(OF )

dY = 1 (resp.
∫

M2n+2r,2n(OF )
dX = 1).

The functions Den(A,B) and Wh,t(B, r) have the following formulas.

Lemma 7.3. ([Hir00], [Cho22b, Lemma 3.5]) For A ∈ Xm(F ) and B ∈ X2n(F ), we have that

Den(A[r], B) =
∑

Y ∈Γ2n\X2n(F )

G(Y,B)F(Y,A[r])
α(Y ; Γ2n) ,

and

Wh,t(B, (−q)−2r) =
∑

Y ∈Γ2n\X2n(F )

G(Y,B)Fh(Y,A[r]
t )

α(Y ; Γ2n) .

Here, we define F(Y,A[r]) by

F(Y,A[r]) :=
∫

Mm,2n(F )
ψ(⟨Y,A[r][X]⟩)dX,

and we define Fh(Y,A[r]
t ) by

Fh(Y,A[r]
t ) :=

∫
M2n+2r,2n(F )

ψ(⟨Y,A[r]
t [X]⟩)1[r]

h,t(X)dX.

We define G(Y,B) by
G(Y,B) :=

∫
Γ2n

ψ(⟨Y,−B[γ]⟩)dγ,

where dγ is the Haar measure on M2n,2n(OF ) such that
∫

M2n,2n(OF ) dγ = 1.
Also, we define α(Y ; Γ2n) by

α(Y ; Γ2n) := lim
d→∞

q−4dn2
Nd(Y ; Γ2n),

where Nd(Y ; Γ2n) = |{γ ∈ Γ2n(mod πd)|γ · Y ≡ Y (mod πd)}|.

Definition 7.4. For r ≥ 0, A ∈ Xn+2r(OF ), and B ∈ Xn(OF ), we can regard F(Y,A[r]),
Den(A[r], B), Fh(Y,A[r]

t ), and Wh,t(B, (−q)−2r) as functions of X = (−q)−2r. We define

F ′(Y,A) := − d

dX
F(Y,A[r])|X=1,

and
F ′

h(Y,At) := − d

dX
Fh(Y,A[r]

t )|X=1.

Also, we define
Den′(A,B) = − d

dX
Den(A,B;X)|X=1,

and
W ′

h,t(B) := − d

dX
Wh,t(B, r)|X=1.
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Definition 7.5. [Cho23, Proposition 2.7] For 0 ≤ i, h ≤ 2n, we define the constant βh
i by

βh
i = α−1

i+1,h

( ∏
1≤m≤2n,m ̸=i+1

(1 − xm)
∏

1≤m≤2n+1,m ̸=i+1
(xm − xi+1)

)
,

where
αi,h = (−q)(n+1−i)(2n−h), 1 ≤ i ≤ n;
αi,h = (−q)(2n+1−i)(2n+h), n+ 1 ≤ i ≤ 2n;
α2n+1,h = 1,

and
xi = (−q)n+1−i, 1 ≤ i ≤ n;
xi = (−q)i−2n−1, n+ 1 ≤ i ≤ 2n;
x2n+1 = 1.

Now, we can state [Cho22b, Conjecture 3.17, Conjecture 3.25].

Conjecture 7.6. [Cho22b, Conjecture 3.17, Conjecture 3.25]
For a basis {x1, . . . , x2n−m, y1, . . . , ym} of V, and special cycles Z(x1),. . . ,Z(x2n−m), Y(y1),. . . ,

Y(ym) in N [n]
2n , we have

χ(N [n]
2n , OZ(x1) ⊗L · · · ⊗L OY(ym)) = 1

Wn,n(An, 1){W ′
m,n(B) −

∑
0≤i≤n−1

βm
i Wm,i(B, 1)}.

Here, χ is the Euler-Poincaré characteristic and ⊗L is the derived tensor product. Also, B is the
matrix

B =
Ç

(xi, xj) (xi, yl)
(yk, xj) (yk, yl)

å
1≤i,j≤2n−m,1≤k,l≤m

.

Assume that special homomophisms {x1, x2, . . . , xn, xn+1, . . . , xn+h, y1, . . . , yn−h} has the her-
mitian matrix:

(7.1) B =

Ö
(xi, xj) (xi, yl)
(yk, xj) (yk, yl)

è
1≤i,j≤n+h,
1≤k,l≤n−h

=

Ö
T

Ih

π−1In−h

è
,

for some n×n matrix T . Then, by Proposition 2.6 and Proposition 2.7, the arithmetic intersection
number of special cycles χ(N [n]

2n , OZ(x1) ⊗L · · · ⊗L OZ(xn+h) ⊗L OY(y1) ⊗L · · · ⊗L OY(yn−h)) in N [n]
2n

can be identified with Intn,h(T ) = Intn,h(L) = χ(N [h]
n , OZ(x1) ⊗L · · · ⊗L OZ(xn)) in N [h]

n , where
L = SpanOF

{x1, · · · , xn}. We note that the valuation of the determinant of B and h+ 1 have the
same parity. Now, Conjecture 7.6 is specialized to the following conjecture.

Conjecture 7.7. Consider a basis {x1, . . . , xn+h, y1, . . . , yn−h} of V with moment matrix B as
in (7.1). Let L = SpanOF

{x1, · · · , xn}. Then

(7.2) Intn,h(L) = Intn,h(T ) = 1
Wn,n(An, 1){W ′

n−h,n(B) −
∑

0≤i≤n−1
βn−h

i Wn−h,i(B, 1)}.

Note that Intn,h(L) is exactly the intersection number considered in Conjecture 3.3. We show
the analytic sides of Conjectures 3.3 and 7.7 also match in §8 (see Corollary 8.7).
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8. Cho-Yamauchi constants

In this section, we will modify the result of [Cho23] to get the Cho-Yamauchi constants in the
case of N [h]

n . More precisely, we want to write the conjectural formula for the arithmetic intersection
numbers of special cycles χ(N [h]

n , OZ(x1) ⊗L · · · ⊗LOZ(xn)) in N [h]
n as a linear sum of representation

densities. First, we start with the following proposition.

Proposition 8.1. Assume that B is of the form in (7.1). Then, we have

W ′
n−h,n(B) = q−4n2+(n+h)(n−h)Den(πAn, In−h)Den′(In+h,h,

Ç
T

Ih

å
)

= q−4n2+(n+h)(n−h)Den(πAn, In−h)Den(In+h,h, Ih)Den′(In,h, T ).

Proof. One can use a similar method as in [KR11, Corollary 9.12] to prove this. For example, see
[Cho22b, Proposition A.3, Proposition A.4, (A.0.4), (A.0.5)]. □

Note that in Proposition 8.1, the terms Den(πAn, In−h) and Den(In+h,h, Ih) are constants, and
Den′(In,h, T ) is the derivative of a usual representation density. Now, by [Cho23], this can be
written as a linear sum of usual representation densities. Let us follow the steps in [Cho23, Section
4.1]. For this, we need to introduce some notations.

Definition 8.2. (1) We write Rn for the set

Rn = {Yσ,e | (σ, e) ∈ Sn × Zn, σ2 = 1, ei = eσ(i),∀i},

where Sn is the symmetric group of degree n, and

Yσ,e = σ

Ü
πe1 0

. . .
0 πen

ê
.

Then Rn forms a complete set of representatives of Γn\Xn(F ).
(2) We write R0+

n for the set

R0+
n = {λ = (λ1, . . . , λn) ∈ Zn | λ1 ≥ · · · ≥ λn ≥ 0}.

(3) For λ ∈ R0+
n , we define Aλ by

Aλ =

Ü
πλ1

. . .
πλn

ê
.

(4) For λ = (λ1, . . . , λn) ∈ R0+
n , we define |λ| by

|λ| =
n∑

i=1
λi.
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Definition 8.3 (Cho-Yamauchi constant). Assume that B is of the form in (7.1). For λ ∈ R0+
n ,

we define Dn,h(λ) to be the constant satisfying
1

Wn,n(An, 1){W ′
n−h,n(B) −

∑
0≤t≤n−1

βn−h
t Wn−h,t(B, 1)} =

∑
λ∈R0+

n

Dn,h(λ) Den(Aλ, T )
Den(Aλ, Aλ) .

The existence and uniqueness of these constants are from [Cho23]. The constant Dn,h(λ) is a
version of the Cho-Yamauchi constant in [CY20].

Remark 8.4. In N h(1, n− 1), let L be a rank n OF -lattice generated by special homomorphisms
x1, . . . , xn in V. Assume that T is the hermitian matrix of L. Then, the valuation of the determinant
of T and h+ 1 have the same parity. Therefore, in Definition 8.3, the terms Den(Aλ, T ) such that

val(det(Aλ)) =
∑

i

λi ̸≡ h+ 1(mod 2)

are always equal to 0.

Now, let us compute the correction terms
−

∑
0≤t≤n−1

βn−h
t Wn−h,t(B, 1)

Wn,n(An, 1) .

Proposition 8.5. Assume that B is of the form in (7.1). If n− h ≤ t ≤ n− 1, we have

Wn−h,t(B, 1) = q−4n2+(n+h)(3n−2t−h)Den(πAt, In−h)Den(In+h,t−n+h, Ih)Den(In,t−n+h, T ).

If t < n− h, we have that Wn−h,t(B, 1) = 0.

Proof. One can use a similar method as in [KR11, Corollary 9.12] to prove this. For example, see
[Cho22b, Proposition A.3, Proposition A.4, (A.0.4), (A.0.5)]. □

Proposition 8.6. For n− h ≤ t ≤ n− 1, we have

βn−h
t Wn−h,t(B, 1)
Wn,n(An, 1) = −(−q)

(n−t)(n−t−1−2h)
2

1 − (−q)−(n−t)
Den(In,t−n+h, T )

Den(In,t−n+h, In,t−n+h) .

Proof. By Definition 7.5, we have that

βn−h
t = (−q)−(n−t)(n+h)

(−1)n−1(−q)
n(n+1)

2 −(n−t)
n∏

l=n+1−t

(1 − (−q)−l)
n−t−1∏

l=1
(1 − (−q)−l)

n∏
l=1

(1 − (−q)−l)

(−1)t(−q)2n(n−t)+ t(t+1)
2

t∏
l=1

(1 − (−q)−l)
2n−t∏
l=1

(1 − (−q)−l)

= (−1)n−t−1(−q)− (n−t)(1+2h+5n−t)
2

∏n
l=n+1−t(1 − (−q)−l) ∏n−t−1

l=1 (1 − (−q)−l) ∏n
l=1(1 − (−q)−l)∏t

l=1(1 − (−q)−l) ∏2n−t
l=1 (1 − (−q)−l)

.

Also, by [Cho22b, Proposition A.4], we have that

Den(πAt, In−h) = Den(
Ç
πI2n−t

It

å
, In−h) =

t∏
l=t−n+h+1

(1 − (−q)−l),

Den(In+h,t−n+h, Ih) =
2n−t∏

l=2n−h−t+1
(1 − (−q)−l),

32



Den(In,t−n+h, In,t−n+h) = q(t−n+h)2
2n−t−h∏

l=1
(1 − (−q)−l)

t−n+h∏
l=1

(1 − (−q)−l),

and
Wn,n(An, 1) = q−3n2

n∏
l=1

(1 − (−q)−l)2.

Combining these and Proposition 8.5, we get the proposition. □

Combining Proposition 8.1 and Proposition 8.6, we get the following corollary which compares
the analytic sides of Conjecture 3.3 and Conjecture 7.6.

Corollary 8.7. Assume that B is of the in (7.1). By Proposition 8.1, Proposition 8.5, Proposition
8.6, and [Cho22b, Proposition A.4], we can write 1

Wn,n(An, 1){W ′
n−h,n(B)−

∑
0≤t≤n−1

βn−h
t Wn−h,t(B, 1)}

in terms of usual representation densities as follows:
1

Wn,n(An, 1){W ′
n−h,n(B) −

∑
0≤t≤n−1

βn−h
t Wn−h,t(B, 1)}

= Den′(In,h, T )
Den(In,h, In,h) +

h−1∑
k=0

(−q)− (h−k)(h+k+1)
2

1 − (−q)−(h−k)
Den(In,k, T )

Den(In,k, In,k) .

By Corollary 8.7, Conjecture 7.7 can be rewritten as follows.

Conjecture 8.8 (Z-cycles in N [h]
n ). For a basis {x1, . . . , xn} of V, and special cycles Z(x1),. . . ,Z(xn)

in N [h]
n , we have

χ(N [h]
n , OZ(x1) ⊗L · · · ⊗L OZ(xn)) = Den′(In,h, T )

Den(In,h, In,h) +
h−1∑
k=0

(−q)− (h−k)(h+k+1)
2

1−(−q)−(h−k)
Den(In,k, T )

Den(In,k, In,k) .

Here, χ is the Euler-Poincaré characteristic and ⊗L is the derived tensor product. Also, T is the
matrix

T =
Ä

(xi, xj)
ä

1≤i,j≤n
.

Proposition 8.9. Conjecture 3.3 is equivalent to Conjecture 8.8.

Proof. The intersection numbers from both conjectures are by definition the same. Hence we only
need to show the analytic sides of both conjectures agree. By Corollary 8.7, we only need to show
βn−h

t from Conjecture 7.6 is the same as cn,t from Conjecture 3.3. Since the cn,t is characterized
by ∂Pdenn,h(In,t) = 0 for t ≤ h − 1 and t ≡ h + 1 (mod 2), we only need to show Dn,h(In,t) = 0
for t ≤ h − 1 and t ≡ h + 1 (mod 2). This is proved in Proposition 9.6 via a method we used
throughout §9 so we postpone the proof. □

Remark 8.10. Before we start to find the constants Dn,h(λ), let us provide a brief explanation

of the forthcoming steps. By Proposition 8.1, we know that
W ′

n−h,n(B)
Wn,n(An, 1) is a constant multiple of

Den′(In,h, T ). Also, we know how to write Den′(In, T ) in terms of a linear sum of representation
densities by [CY20] and [LZ22a, Theorem 3.5.1] (see Proposition 8.15 below).
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Now, we consider Den′(In,h, T ) − (−q)nhDen′(In, T ). Then, it is possible to write the difference
between these two in terms of a certain linear sum of representation densities (see (8.11)). There-
fore, we can use the linear sum expression of (−q)nhDen′(In, T ) and the difference Den′(In,h, T ) −
(−q)nhDen′(In, T ) to find all constants Dn,h(λ). This is what we will do in the next few pages.

Definition 8.11. (1) For Y ∈ Rn, we define

t0(Y ) = |{ei | ei ≥ 0}|,

and for k ≥ 1, we define
tk(Y ) = |{ei | ei = −k}|.

(2) For η ∈ R0+
n , and k ≥ 0, we define

tk(η) = |{ηi | ηi = k}|,

and
t≥k(η) = |{ηi | ηi ≥ k}|.

(3) For Y ∈ Rn, we define
t(Y ) = (t0(Y ), t1(Y ), . . . ).

Similarly, for η ∈ R0+
n , we define

t(η) = (t0(η), t1(η), . . . ).

Definition 8.12. (1) For λ = (λ,
t1(λ)︷ ︸︸ ︷

1, . . . , 1,
t0(λ)︷ ︸︸ ︷

0, . . . , 0) ∈ R0+
n , and 0 ≤ s ≤ t0(λ), we define

λ+
s := (λ,

t1(λ)+s︷ ︸︸ ︷
1, . . . , 1,

t0(λ)−s︷ ︸︸ ︷
0, . . . , 0),

by replacing s zeros by s 1’s.

(2) For λ = (λ,
t1(λ)︷ ︸︸ ︷

1, . . . , 1,
t0(λ)︷ ︸︸ ︷

0, . . . , 0) ∈ R0+
n and 0 ≤ s ≤ t1(λ), we define

λ−
s = (λ,

t1(λ)−s︷ ︸︸ ︷
1, . . . , 1,

t0(λ)+s︷ ︸︸ ︷
0, . . . , 0),

by replacing s 1’s by s zeros.
(3) For 0 ≤ l ≤ n and λ ∈ R0+

n such that t0(λ) ≥ l, we define λ∨l as the element in R0+
n−l such

that λ = (λ∨l , 0, . . . , 0).

Definition 8.13. Assume that k ≥ 0, α, η ∈ R0+
n , Y ∈ R0+

n , and t(η) = t(Y ).
(1) We define

Bk(Y ) =
∑

i

min(0, ei + k) − min(0, ei),

and
Bk(η) =

∑
i

min(k, ηi).

Note that Bk(η) = Bk(Y ) since t(η) = t(Y ).
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(2) We define

Bα(Y ) =
∑

i

Bαi(Y ),

and

Bα(η) =
∑

i

Bαi(η).

Note that Bα(η) = Bα(Y ) since t(η) = t(Y ).
(3) We define f(Y ) by

f(Y ) =
∏

i

(−q)n min(0,ei).

By Lemma 7.3 and the fact that Rn forms a complete set of representatives of Γn\Xn(F ), we
have that

(8.1) Den′(In,h, B) =
∑

Y ∈Rn

G(Y,B)F ′(Y, In,h)
α(Y ; Γn) ,

(8.2) Den′(In, B) =
∑

Y ∈Rn

G(Y,B)F ′(Y, In)
α(Y ; Γn) ,

and for λ ∈ R0+
n ,

(8.3) Den(Aλ, B) =
∑

Y ∈Rn

G(Y,B)F(Y,Aλ)
α(Y ; Γn) .

By [Cho23, Lemma 3.2, Section 3.2], we know that F ′(Y, In,h) can be written uniquely as a linear
sum of F(Y,Aλ), λ ∈ R0+

n . As in the proof of [Cho22b, Lemma 3.15], we can compute that for

Y = Yσ,e = σ

Ü
πe1 0

. . .
0 πen

ê
,

we have

F ′(Y, In,h) =
∑

j

min(0, ej)(−q)hB1(Y )f(Y ),

F ′(Y, In) =
∑

j

min(0, ej)f(Y ),

and

F(Y,Aλ) = (−q)Bλ(Y )f(Y ).
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Therefore, we have that (cf. [Cho23, (4.1.1)])
(8.4)

F ′(Y, In,h) − (−q)hnF ′(Y, In) =



0 if t0(Y ) = 0,
(
∑

j

min(0, ej))f(Y )((−q)h(n−1) − (−q)hn) if t0(Y ) = 1,

...
(
∑

j

min(0, ej))f(Y )((−q)h(n−k) − (−q)hn) if t0(Y ) = k,

...
(
∑

j

min(0, ej))f(Y )(1 − (−q)hn) if t0(Y ) = n.

Now, let us define the following constants and matrices.

Definition 8.14.
(1) (cf. [Cho23, Lemma 4.4]) For 0 ≤ i ≤ l, we define constants dil by

dil = (−q)−in
∏

0≤m≤l
m̸=i

1
((−q)−i − (−q)−m) .

Therefore, we have
dil

di+1,l
= −(−q)n+i+1−l (1 − (−q)−(i+1))

(1 − (−q)(l−i))
.

(2) We define the upper triangular (n+ 1) × (n+ 1) matrix ∆ by

∆ =


d00 d01 d02 . . . d0n

0 d11 d12 . . . d1n

0 0 d22 . . . d2n

... . . . . . . . . . ...
0 0 0 . . . dnn

 .

(3) For l ≤ 0, we define Ml by

Ml :

à
1 (−q)2n . . . (−q)2ln

1 (−q)2n−1 . . . (−q)l(2n−1)

...
... . . . ...

1 (−q)2n−l . . . (−q)l(2n−l)

í
.

(4) For 0 ≤ i, j ≤ n, we define constants Aij by

(Aij)0≤i,j≤n = Mn∆.

(5) For 0 ≤ i ≤ n, we define constants Ki by

(Aij)

à
K0

K1
...

Kn

í
=

à
0

(−q)h(n−1) − (−q)hn

...
1 − (−q)hn

í
.
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Proposition 8.15. [Cho23, Proposition 3.3, Proposition 3.4] We define the following constants.
(1) For α ∈ R0+

n such that
∑
αi =odd, we write Cα for

Cα =
t≥1(α)−1∏

i=1
(1 − (−q)i).

Here, we define Cα = 1 if t≥1(α) = 1.
(2) For α ∈ R0+

n such that
∑
αi =even and α ̸= (0, 0, . . . , 0), we write Cα for

Cα = −
t≥1(α)−1∏

i=1
(1 − (−q)i).

Here, we define Cα = −1 if t≥1(α) = 1.
Also, if α = (0, 0, . . . , 0), we define

Cα = Den′(In, In)
Den(In, In) .

Then, we have that
Den′(In, B)
Den(In, In) =

∑
α∈R0+

n

Cα
Den(Aα, B)
Den(Aα, Aα) .

Now, by [Cho23, (4.1.5)], we have that for λ ∈ R0+
n with t0(Y ) ≥ l,

(8.5)

∑
0≤i≤l

dilF(Y,Aλ+
i

) =



0 = A0lF(Y,Aλ) if t0(Y ) = 0,
...

...
0 = Al−1,lF(Y,Aλ) if t0(Y ) = l − 1,
(−q)Bλ(Y )f(Y ) = F(Y,Aλ) = AllF(Y,Aλ) if t0(Y ) = l,

AklF(Y,Aλ) if t0(Y ) = k, l + 1 ≤ k ≤ n.

Also, by Proposition 8.15, we have that for Y ∈ R0+
n−l,

F ′(Y, In−l)
Den(In−l, In−l)

=
∑

λ∈R0+
n−l

Cλ

F(Y,Aλ)
Den(Aλ, Aλ)

⇐⇒
∑

i min(0, ei)f(Y ) =
∑

λ∈R0+
n−l

Cλ

Den(In−l, In−l)
Den(Aλ, Aλ) (−q)B

λ
(Y )f(Y )

⇐⇒
∑

i min(0, ei) =
∑

λ∈R0+
n−l

Cλ

Den(In−l, In−l)
Den(Aλ, Aλ) (−q)B

λ
(Y ).

Since running λ = (λ∨l , 0, . . . , 0) over R0+
n with t0(Y ) ≥ l is equivalent to running λ∨l over R0+

n−l

by removing l zeros, we have that

(8.6)

∑
λ∈R0+

n ,t0(Y )≥l

Cλ∨l

Den(In−l, In−l)
Den(Aλ∨l , Aλ∨l )

∑
0≤i≤l

dilF0(Y,Aλ+
i

)

=
®

0 = Ail
∑

j min(0, ej)f(Y ) if t0(Y ) ≤ l − 1
Ail

∑
j min(0, ej)f(Y ) if t0(Y ) ≥ l.
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In Definition 8.14 (5), we defined constants Ki such that

(Aij)

à
K0

K1
...

Kn

í
=

à
0

(−q)h(n−1) − (−q)hn

...
1 − (−q)hn

í
.

Therefore, we have that
n∑

l=0
Kl{

∑
λ∈R0+

n ,t0(Y )≥l

Cλ∨l

Den(In−l, In−l)
Den(Aλ∨l , Aλ∨l )

∑
0≤i≤l

dilF0(Y,Aλ+
i

)}

=



0 if t0(Y ) = 0,
(
∑

j

min(0, ej))f(Y )((−q)h(n−1) − (−q)hn) if t0(Y ) = 1,

...
(
∑

j

min(0, ej))f(Y )((−q)h(n−k) − (−q)hn) if t0(Y ) = k,

...
(
∑

j

min(0, ej))f(Y )(1 − (−q)hn) if t0(Y ) = n.

By comparing this with (8.4), we have that

(8.7)
F ′(Y, In,h) − (−q)hnF ′(Y, In)

=
n∑

l=0
Kl{

∑
λ∈R0+

n ,t0(Y )≥l

Cλ∨l

Den(In−l, In−l)
Den(Aλ∨l , Aλ∨l )

∑
0≤i≤l

dilF0(Y,Aλ+
i

)}.

Now, we have the following lemma.

Lemma 8.16. (cf. [Cho23, Lemma 4.5]) For i = 0 and h + 1 ≤ i ≤ n, Ki = 0. Also, dhhKh = 1
and for 1 ≤ l ≤ h− 1, we have

dh−l,h−lKh−l = (−q)n 1 − (−q)−h+l−1

1 − (−q)−l
dh−l+1,h−l+1Kh−l+1.

Proof. As in [Cho23, Lemma 4.3], one can show that

(8.8) ∆



K0

K1

. . .

Kn

. . .

K2n


=



−(−q)nh

0
0
1
0
0



1st entry

(h+1)-th entry

.

Since ∆ is an upper triangular matrix, we have that Ki = 0 for h+ 1 ≤ i ≤ n. Also, the (h+ 1)-th
row of (8.8) implies that

dhhKh + dh,h+1Kh+1 + · · · + dh,nKn = 1,
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and hence dhhKh = 1. Now, the proof of the last statement is almost identical to the proof of
[Cho23, Lemma 4.5]. □

Now, we are ready to write the following proposition on the constants Dn,h(λ).

Proposition 8.17. (cf. [Cho23, Theorem 4.7]) For 0 ≤ h ≤ n and λ ∈ R0+
n such that λ ̸=

(1t, 0n − t), t ≤ h− 1, we have

(8.9)

Dn,h(λ) = qh(n−h) ∏n
l=1(1 − (−q)−l)∏h

l=1(1 − (−q)−l) ∏n−h
l=1 (1 − (−q)−l)

Cλ

+
∑

1≤i≤h
max{i−t0(λ),0}≤s

≤min{i,t1(λ)}

(−q)n(h−i)+(i−s)(2n−i+s+1)/2−h2+s(2n−2t0(λ)−s)(−1)i+h

×
∏n−i

l=1 (1 − (−q)−l)∏n−h
l=1 (1 − (−q)−l) ∏h

l=1(1 − (−q)−l)
×

∏h
l=s+1(1 − (−q)−l)∏h−i

l=1 (1 − (−q)−l) ∏i−s
l=1(1 − (−q)−l)

×
∏l=t0(λ)

l=1 (1 − (−q)−l) ∏l=t1(λ)
l=1 (1 − (−q)−l)∏l=t0(λ)−i+s

l=1 (1 − (−q)−l) ∏l=t1(λ)−s
l=1 (1 − (−q)−l)

× C(λ−
s )∨i .

Here, we choose the following convention: for k ≤ 0, we assume that
k∏

l=1
(∗) = 1 and

k∑
l=1

(∗) = 0.

If λ = (1t, 0n−t), t ≤ h − 1, then Dn,h(λ) = the right hand side of (8.9) + (−q)
−(h−t)(h+t+1)

2

1 − (−q)−(h−t) . In

particular, Dn,h(λ) depends only on n, t0(λ), t1(λ), and the parity of
∑

i λi.

Remark 8.18. Note that when h = 0, the sum
∑

1≤i≤h
max{i−t0(λ),0}≤s≤min{i,t1(λ)}

(∗) in (8.9) is empty, and

hence Dn,0(λ) = Cλ which is obvious by construction. Therefore, Proposition 8.17 decomposes Dn,h

into a weighted summation of Dn,0, which is the Cho-Yamauchi constant in the good reduction
case.

Proof of Proposition 8.17. The proof is almost identical to the proof of [Cho23, Theorem 4.7];
therefore, let me just write which parts are different. First, note that for B ∈ Xn(F ) of the form
in (7.1), Proposition 8.1 implies that

(8.10)
W ′

n−h,n(B)
Wn,n(An, 1) = q−4n2+(n+h)(n−h)Den(πAn, In−h)Den(In+h,h, Ih)Den′(In,h, T )

Wn,n(An, 1) .

Now, by (8.1), (8.2), (8.3), and (8.7), we have
(8.11)

Den′(In,h, T ) = (−q)nhDen′(In, T ) +
n∑

l=0
Kl{

∑
λ∈R0+

n ,t0(Y )≥l

Cλ∨l

Den(In−l, In−l)
Den(Aλ∨l , Aλ∨l )

∑
0≤i≤l

dilDen(Aλ+
i
, T )}.
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Now, we can easily follow the proof of [Cho23, Theorem 4.7] by using Lemma 8.16, (8.10), and
(8.11). Also, for λ = (1t, 0n−t), t ≤ h− 1, we use Proposition 8.6. □

Note that Dn,h(λ) depends only on t≥2(λ), t1(λ), t0(λ), and the parity of ∑
i λi. Also, by Remark

8.4, we only need to consider λ such that ∑
i λi ≡ h+ 1 (mod 2). Also, later on, we will establish

inductive formulas relating Dn,h(λ) for λ with different t≥2(λ), t1(λ) and t0(λ). So we introduce
the following notation to streamline the computation.

Definition 8.19. Assume that h, n, a, b, c, i, j, s ≥ 0, 0 ≤ s ≤ i ≤ h ≤ n, 0 ≤ j ≤ n, and
n = a+ b+ c.

(1) If c ̸= n, we write Cj(a, b, c) for

Cj(a, b, c) = (−1)j+1
a+b−1∏

i=1
(1 − (−q)i).

Also, if c = n, we define

Cj(0, 0, n) = Den′(In, In)
Den(In, In) .

Then, for λ ∈ R0+
n , we have that

Cλ = C|λ|(t≥2(λ), t1(λ), t0(λ)).

(2) Let Mn,h(a, b, c, i, s) be the constant

Mn,h(a, b, c, i, s) =(−q)n(h−i)+(i−s)(2n−i+s+1)/2−h2+s(2n−2c−s)(−1)i+h

×
∏n−i

l=1 (1 − (−q)−l)∏n−h
l=1 (1 − (−q)−l) ∏h

l=1(1 − (−q)−l)
×

∏h
l=s+1((1 − (−q)−l)∏h−i

l=1 (1 − (−q)−l) ∏i−s
l=1(1 − (−q)−l)

×
∏c

l=1(1 − (−q)−l) ∏b
l=1(1 − (−q)−l)∏c−i+s

l=1 (1 − (−q)−l) ∏b−s
l=1(1 − (−q)−l)

× Ch+1−s(a, b− s, c+ s− i).

(3) For (a, b, c) ̸= (0, t, n− t), t ≤ h− 1, we write Dn,h(a, b, c) for

Dn,h(a, b, c) =
∑

0≤i≤h
max(i−c,0)≤s≤min(i,b)

Mn,h(a, b, c, i, s) =
∑

0≤s≤min(h,b)
s≤i≤min(s+c,h)

Mn,h(a, b, c, i, s).

(4) For (a, b, c) = (0, t, n− t), t ≤ h− 1, t ≡ h+ 1 (mod 2), we write Dn,h(a, b, c) for

Dn,h(0, t, n− t) =
∑

0≤i≤h
max(i−c,0)≤s≤min(i,b)

Mn,h(a, b, c, i, s) + (−q)
−(h−t)(h+t+1)

2

1 − (−q)−(h−t)

=
∑

0≤s≤min(h,b)
s≤i≤min(s+c,h)

Mn,h(a, b, c, i, s) + (−q)
−(h−t)(h+t+1)

2

1 − (−q)−(h−t) .

Proposition 8.20. For λ ∈ R0+
n , we have that

Dn,h(λ) = Dn,h(t≥2(λ), t1(λ), t0(λ)).
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Proof. This follows from the definitions of Mn,h(a, b, c, i, s), Dn,h(a, b, c), Proposition 8.17, and the
fact that

Mn,h(a, b, c, 0, 0) = qh(n−h) ∏n
l=1(1 − (−q)−l)∏h

l=1(1 − (−q)−l) ∏n−h
l=1 (1 − (−q)−l)

Ch+1(a, b, c).

□

9. Inductive relations among Cho-Yamauchi constants

In this section, we will prove some inductive relations among Dn,h(λ). The main result of this
section can be summarized as follows: Let 0 ≤ a, b, c, h,≤ n, a + b + c = n. Assume further that
(a− 1, b+ 1, c) ̸= (0, h, n− h). Then, we have the following result.

(1) (Theorem 9.4) If c ≤ n− h and a ≥ 1, then

Dn,h(a, b, c) −Dn,h(a− 1, b+ 1, c) = −(−q)2n−h−1−b−2cDn−1,h−1(a− 1, b, c).

(2) (Lemma 9.5, Proposition 9.6) If c > n− h, then Dn,h(a, b, c) = 0.
(3) (Theorem 9.8 (1)) Assume that a = 0 and h+ 1 ≤ b. Then, we have

Dn,h(0, b, c) =
∏b

l=h+1(1 − (−q)l)
(1 − (−q)b−h) .

(4) (Theorem 9.8 (2)) Assume that a = 1 and h− 1 ≤ b. Then, we have

Dn,h(1, b, c) =
®

1 if b = h− 1, h;∏b
l=h+1(1 − (−q)l) if b ≥ h+ 1.

Here, the main reason for excluding the case (a − 1, b + 1, c) = (0, h, n − h) is because it is not
necessary by Remark 8.4.

First, let us prove the following lemma.

Lemma 9.1. Let 0 ≤ a, b, c, h ≤ n, a+ b+ c = n, and 0 ≤ s ≤ min(h, b).
(1) If c ≤ n− h and (a, b, c) ̸= (0, h, n− h), we have that

min(s+c,h)∑
i=s

Mn,h(a, b, c, i, s)

= (−1)n+c+s+1(−q)
c
2 + c2

2 −h2− n
2 −cn+hn+ n2

2 −ch+ s
2 − s2

2

×
∏b

l=1(1 − (−q)−l) ∏n−c−s
l=1 (1 − (−q)−l) ∏n−c−s−1

l=1 (1 − (−q)−l)∏b−s
l=1(1 − (−q)−l) ∏s

l=1(1 − (−q)−l) ∏n−h−c
l=1 (1 − (−q)−l) ∏h−s

l=1 (1 − (−q)−l)
.

(2) If c > n− h and a ̸= 0, we have that
∑min(s+c,h)

i=s Mn,h(a, b, c, i, s) = 0.

Proof. By our assumption, we have that (a, b−s, c+s−i) ̸= (0, 0, n−i) for any i ≤ s ≤ min(s+c, h).
Therefore, by Definition 8.19 (1), we have that

Ch+1−s(a, b− s, c+ s− i) = (−1)h−s ∏n−c−s−1
l=1 (1 − (−q)l)

= (−1)n+c+h+1(−q)(n−c−s−1)(n−c−s)/2 ∏n−c−s−1
l=1 (1 − (−q)−l),
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which is independent of i. Also, by Definition 8.19 (2), we have that

Mn,h(a, b, c, i, s) = Ch+1−s(a, b− s, c+ s− i)Yn,h(b, c, s)Xn,h(c, i, s),

where

Yn,h(b, c, s) := (−1)h(−q)−h2+hn− s
2 − 3s2

2 −2cs+ns

c∏
l=1

(1 − (−q)−l)
b∏

l=1
(1 − (−q)−l)

n−h∏
l=1

(1 − (−q)−l)
s∏

l=1
(1 − (−q)−l)

b−s∏
l=1

(1 − (−q)−l)
,

which is independent of i, and

Xn,h(c, i, s) :=
(−1)i(−q) i

2 − i2
2 +is

n−i∏
l=1

(1 − (−q)−l)

h−i∏
l=1

(1 − (−q)−l)
i−s∏
l=1

(1 − (−q)−l)
c−i+s∏

l=1
(1 − (−q)−l)

.

Now, we note that Lemma 9.1 follows from the following claim
(9.1)

min(s+c,h)∑
i=s

Xn,h(c, i, s) =



(−1)s(−q)−ch+cs+ s
2 + s2

2

n−h∏
l=1

(1 − (−q)−l)
n−s−c∏

l=1
(1 − (−q)−l)

h−s∏
l=1

(1 − (−q)−l)
c∏

l=1
(1 − (−q)−l)

n−h−c∏
l=1

(1 − (−q)−l)
if c ≤ n− h,

0 if c > n− h.

Hence it suffices to show that (9.1) holds.
If h = s, then

min(s+c,h)∑
i=s

Xn,h(c, i, s) = Xn,h(c, s, s) = (−1)s(−q) s
2 + s2

2
∏n−s

l=1 (1 − (−q)−l)∏c
l=1(1 − (−q)−l) .

Therefore, (9.1) holds in this case.
Similarly, if c = 0, then

min(s+c,h)∑
i=s

Xn,h(c, i, s) = Xn,h(c, s, s) = (−1)s(−q) s
2 + s2

2
∏n−s

l=1 (1 − (−q)−l)∏h−s
l=1 (1 − (−q)−l)

.

Therefore, (9.1) holds in this case.
Now, assume that c ≥ 1 and h > s. In Lemma 9.2 below, we will prove that

(9.2)
min(s+c,h)∑

i=s

Xn,h(c, i, s)
Xn,h(c, s, s) = (−q)−(h−s)(1 − (−q)−(n−h))

1 − (−q)−(n−s)

min(s+c−1,h)∑
i=s

Xn−1,h(c− 1, i, s)
Xn−1,h(c− 1, s, s) .

Assume (9.2) holds for now. Then we are ready to prove (9.1).
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If c ≤ n− h, by applying (9.2) repeatedly, we have that

min(s+c,h)∑
i=s

Xn,h(c, i, s)
Xn,h(c, s, s) = (−q)−c(h−s)

∏n−h
l=n−h−c+1(1 − (−q)−l)∏n−s
l=n−s−c+1(1 − (−q)−l)

min(s+0,h)∑
i=s

Xn−c,h(0, i, s)
Xn−c,h(0, s, s)

= (−q)−c(h−s)
∏n−h

l=n−h−c+1(1 − (−q)−l)∏n−s
l=n−s−c+1(1 − (−q)−l)

.

Combining this with

Xn,h(c, s, s) = (−1)s(−q) s
2 + s2

2
∏n−s

l=1 (1 − (−q)−l)∏h−s
l=1 (1 − (−q)−l) ∏c

l=1(1 − (−q)−l)
,

we see that (9.1) holds when c ≤ n− h.
Now, assume that c > n− h. By (9.2), we have that

min(s+c,h)∑
i=s

Xn,h(c, i, s)
Xn,h(c, s, s) = (−q)−(n−h)(h−s)

∏n−h
l=1 (1 − (−q)−l)∏n−s

l=h−s+1(1 − (−q)−l)

min(s+c−n+h,h)∑
i=s

Xh,h(c− n+ h, i, s)
Xh,h(c− n+ h, s, s) .

Therefore, it suffices to show that
min(s+c−n+h,h)∑

i=s

Xh,h(c− n+ h, i, s)
Xh,h(c− n+ h, s, s) = 0.

Note that s ≤ min(h, b) and hence s+c ≤ b+c ≤ n. Therefore, min(s+c−n+h, h) = s+c−n+h.
For simplicity, let us write c′ = c− n+ h ≥ 1.

We claim that

(9.3)
s+k∑
i=s

Xh,h(c′, i, s)
Xh,h(c′, s, s) = (−1)k(−q)− k(k+1)

2

∏c′−1
l=c′−k(1 − (−q)−l)∏k

l=1(1 − (−q)−l)
,

which specializes to

s+c′∑
i=s

Xh,h(c′, i, s)
Xh,h(c′, s, s) = 0

when k = c′.
Therefore it suffices to prove (9.3). We prove this by induction on k. Recall that by definition,

we have

Xh,h(c′, s+ k, s)
Xh,h(c′, s, s) = (−1)k(−q)− k(k−1)

2

∏c′
l=c′−k+1(1 − (−q)−l)∏k

l=1(1 − (−q)−l)
.

When k = 0, both sides are 1. When k = 1,

s+1∑
i=s

Xh,h(c′, i, s)
Xh,h(c′, s, s) = 1 − 1 − (−q)−c′

1 − (−q)−1 = −(−q)−1 1 − (−q)−(c′−1)

1 − (−q)−1 .
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Now, assume that (9.3) holds for k. Then, we have
s+k+1∑

i=s

Xh,h(c′, i, s)
Xh,h(c′, s, s) = (−1)k(−q)− k(k+1)

2

∏c′−1
l=c′−k(1 − (−q)−l)∏k

l=1(1 − (−q)−l)
+ Xh,h(c′, s+ k + 1, s)

Xh,h(c′, s, s)

= (−1)k(−q)− k(k+1)
2

∏c′−1
l=c′−k(1 − (−q)−l)∏k

l=1(1 − (−q)−l)
{1 − 1 − (−q)−c′

1 − (−q)−k−1 }

= (−1)k+1(−q)− (k+1)(k+2)
2

∏c′−1
l=c′−k−1(1 − (−q)−l)∏k+1

l=1 (1 − (−q)−l)
.

This shows that (9.3) holds and finishes the proof of (9.1), and hence the proof of the lemma. □

Lemma 9.2. For c ≥ 1 and h > s, the function Xn,h(c, i, s) (defined in the proof of the Lemma
9.1) satisfies

(9.4)
min(s+c,h)∑

i=s

Xn,h(c, i, s)
Xn,h(c, s, s) = (−q)−(h−s)(1 − (−q)−(n−h))

1 − (−q)−(n−s)

min(s+c−1,h)∑
i=s

Xn−1,h(c− 1, i, s)
Xn−1,h(c− 1, s, s) .

Proof. To prove (9.4), we define Zn,h(c, j, s) to be

Zn,h(c, j, s) = (−1)j−s(−q)− (j−s)(j−s+1)
2

∏c−1
l=c−j+s(1 − (−q)−l) ∏h−s

l=h−j+1(1 − (−q)−l)∏j−s
l=1 (1 − (−q)−l) ∏n−s

l=n−j+1(1 − (−q)−l)
.

Note that if c ≥ 1 and h > s, we have that min(s+ c, h) > s.
Now, we claim the following statement: for k ≥ 1, we have

(9.5)
s+k∑
i=s

Xn,h(c, i, s)
Xn,h(c, s, s) − (−q)−(h−s)(1 − (−q)−(n−h))

1 − (−q)−(n−s)

s+k−1∑
i=s

Xn−1,h(c− 1, i, s)
Xn−1,h(c− 1, s, s) = Zn,h(c, s+ k, s).

By definition, we have that

Xn,h(c, i, s)
Xn,h(c, s, s) = (−1)i−s(−q)− (i−s)(i−s−1)

2

∏c
l=c−i+s+1(1 − (−q)−l) ∏h−s

l=h−i+1(1 − (−q)−l)∏i−s
l=1(1 − (−q)−l) ∏n−s

l=n−i+1(1 − (−q)−l)
.

In particular, when k = 1, we have that
s+1∑
i=s

Xn,h(c, i, s)
Xn,h(c, s, s) = 1 − (1 − (−q)−c)(1 − (−q)−(h−s))

(1 − (−q)−1)(1 − (−q)−(n−s))

= (−q)−(h−s)(1 − (−q)−(n−h))
1 − (−q)−(n−s) − (−q)−1(1 − (−q)−(c−1))(1 − (−q)−(h−s))

(1 − (−q)−1)(1 − (−q)−(n−s))

= (−q)−(h−s)(1 − (−q)−(n−h))
1 − (−q)−(n−s)

Xn−1,h(c− 1, s, s)
Xn−1,h(c− 1, s, s) + Zn,h(c, s+ 1, s).

Therefore, (9.5) holds for k = 1.
Now, assume that (9.5) is true for k, then it suffices to show that

(9.6)
Zn,h(c, s+ k, s) + Xn,h(c, s+ k + 1, s)

Xn,h(c, s, s)

= (−q)−(h−s)(1 − (−q)−(n−h))
1 − (−q)−(n−s)

Xn−1,h(c− 1, s+ k, s)
Xn−1,h(c− 1, s, s) + Zn,h(c, s+ k + 1, s).
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Indeed,

Zn,h(c, s+ k, s) + Xn,h(c, s+ k + 1, s)
Xn,h(c, s, s)

= (−1)k(−q)− k(k+1)
2

c−1∏
l=c−k

(1 − (−q)−l)
h−s∏

l=h−s−k+1
(1 − (−q)−l)

k∏
l=1

(1 − (−q)−l)
n−s∏

l=n−s−k+1
(1 − (−q)−l)

{1 − (1 − (−q)−c)(1 − (−q)−(h−s−k))
(1 − (−q)−(k+1))(1 − (−q)−(−n−s−k) },

and

1 − (1 − (−q)−c)(1 − (−q)−(h−s−k))
(1 − (−q)−(k+1))(1 − (−q)−(−n−s−k))

= (−q)k(−q)−(h−s)(1 − (−q)−(n−h))
1 − (−q)−(n−s−k)

− (−q)−(k+1)(1 − (−q)−(−c−k−1))(1 − (−q)−(h−s−k))
(1 − (−q)−(k+1))(1 − (−q)−(n−s−k))

.

Now, note that

(−1)k(−q)− k(k+1)
2

∏c−1
l=c−k(1 − (−q)−l) ∏h−s

l=h−s−k+1(1 − (−q)−l)∏k
l=1(1 − (−q)−l) ∏n−s

l=n−s−k+1(1 − (−q)−l)
× (−q)k(−q)−(h−s)(1 − (−q)−(n−h))

1 − (−q)−(n−s−k)

= (−1)k(−q)− k(k−1)
2

∏c−1
l=c−k(1 − (−q)−l) ∏h−s

l=h−s−k+1(1 − (−q)−l)∏k
l=1(1 − (−q)−l) ∏n−s−1

l=n−s−k(1 − (−q)−l)
× (−q)−(h−s)(1 − (−q)−(n−h))

1 − (−q)−(n−s)

= Xn−1,h(c− 1, s+ k, s)
Xn−1,h(c− 1, s, s)

(−q)−(h−s)(1 − (−q)−(n−h))
1 − (−q)−(n−s) ,

and

(−1)k(−q)− k(k+1)
2

∏c−1
l=c−k(1 − (−q)−l) ∏h−s

l=h−s−k+1(1 − (−q)−l)∏k
l=1(1 − (−q)−l) ∏n−s

l=n−s−k+1(1 − (−q)−l)

× {−(−q)−(k+1)(1 − (−q)−(−c−k−1))(1 − (−q)−(h−s−k))
(1 − (−q)−(k+1))(1 − (−q)−(n−s−k))

}

= (−1)k+1(−q)− (k+1)(k+2)
2

∏c−1
l=c−k−1(1 − (−q)−l) ∏h−s

l=h−s−k(1 − (−q)−l)∏k+1
l=1 (1 − (−q)−l) ∏n−s

l=n−s−k(1 − (−q)−l)
= Zn,h(c, s+ k + 1, s).

Therefore, combining these two, we have that (9.6) holds, and hence (9.5) holds.
Now, we are ready to prove (9.4). When h ≥ s + c, we have that min(s + c, h) = s + c and

min(s+ c− 1, h) = s+ c− 1. Also, by (9.5), we have

s+c∑
i=s

Xn,h(c, i, s)
Xn,h(c, s, s) −

s+c−1∑
i=s

Xn−1,h(c− 1, i, s)
Xn−1,h(c− 1, s, s)

(−q)−(h−s)(1 − (−q)−(n−h))
1 − (−q)−(n−s) = Zn,h(c, s+ c, s).

Now, note that Zn,h(c, s+ c, s) = 0. This implies that (9.4) holds when h ≥ s+ c.
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When h ≤ s + c − 1, we have that min(s + c, h) = h and min(s + c − 1, h) = h. Therefore, by
(9.5), we have

∑min(s+c,h)
i=s

Xn,h(c, i, s)
Xn,h(c, s, s) − (−q)−(h−s)(1 − (−q)−(n−h))

1 − (−q)−(n−s)
∑min(s+c−1,h)

i=s

Xn−1,h(c− 1, i, s)
Xn−1,h(c− 1, s, s)

=
h∑

i=s

Xn,h(c, i, s)
Xn,h(c, s, s) − (−q)−(h−s)(1 − (−q)−(n−h))

1 − (−q)−(n−s)

h∑
i=s

Xn−1,h(c− 1, i, s)
Xn−1,h(c− 1, s, s)

= Zn,h(c, h, s) − (−q)−(h−s)(1 − (−q)−(n−h))
1 − (−q)−(n−s)

Xn−1,h(c− 1, h, s)
Xn−1,h(c− 1, s, s)

= 0.
This finishes the proof of the lemma. □

Lemma 9.3. Let 0 ≤ a, b, c, h ≤ n, a + b + c = n, and 0 ≤ s ≤ min(h, b). If c ≤ n − h and
(a, b, c) ̸= (0, h, n− h), we have that∑min(s+c,h)

i=s Mn,h(a, b, c, i, s) −
∑min(s+c,h)

i=s Mn,h(a− 1, b+ 1, c, i, s)
= −(−q)2n−h−1−b−2c ∑min(s+c−1,h−1)

i=s−1 Mn−1,h−1(a− 1, b, c, i, s− 1).

Proof. By Lemma 9.1 (1), we have that
min(s+c,h)∑

i=s

Mn,h(a, b, c, i, s) −
min(s+c,h)∑

i=s

Mn,h(a− 1, b+ 1, c, i, s)

= (−1)n+c+s+1(−q)
c
2 + c2

2 −h2− n
2 −cn+hn+ n2

2 −ch+ s
2 − s2

2

× {
∏b

l=1(1 − (−q)−l) ∏n−c−s
l=1 (1 − (−q)−l) ∏n−c−s−1

l=1 (1 − (−q)−l)∏b−s
l=1(1 − (−q)−l) ∏s

l=1(1 − (−q)−l) ∏n−h−c
l=1 (1 − (−q)−l) ∏h−s

l=1 (1 − (−q)−l)

−
∏b+1

l=1 (1 − (−q)−l) ∏n−c−s
l=1 (1 − (−q)−l) ∏n−c−s−1

l=1 (1 − (−q)−l)∏b+1−s
l=1 (1 − (−q)−l) ∏s

l=1(1 − (−q)−l) ∏n−h−c
l=1 (1 − (−q)−l) ∏h−s

l=1 (1 − (−q)−l)
}

= (−1)n+c+s(−q)
c
2 + c2

2 −h2− n
2 −cn+hn+ n2

2 −ch+ s
2 − s2

2 −(b+1−s)

×
∏b

l=1(1 − (−q)−l) ∏n−c−s
l=1 (1 − (−q)−l) ∏n−c−s−1

l=1 (1 − (−q)−l)∏b+1−s
l=1 (1 − (−q)−l) ∏s−1

l=1 (1 − (−q)−l) ∏n−h−c
l=1 (1 − (−q)−l) ∏h−s

l=1 (1 − (−q)−l)
.

On the other hand,

− (−q)2n−h−1−b−2c
min(s+c−1,h−1)∑

i=s−1
Mn−1,h−1(a− 1, b, c, i, s− 1)

= (−1)n+c+s(−q)
c
2 + c2

2 −(h−1)2− n−1
2 −c(n−1)+(h−1)(n−1)+ (n−1)2

2 −c(h−1)+ s−1
2 − (s−1)2

2 +2n−h−1−b−2c

×
∏b

l=1(1 − (−q)−l) ∏n−c−s
l=1 (1 − (−q)−l) ∏n−c−s−1

l=1 (1 − (−q)−l)∏b+1−s
l=1 (1 − (−q)−l) ∏s−1

l=1 (1 − (−q)−l) ∏n−h−c
l=1 (1 − (−q)−l) ∏h−s

l=1 (1 − (−q)−l)

= (−1)n+c+s(−q)
c
2 + c2

2 −h2− n
2 −cn+hn+ n2

2 −ch+ 3s
2 − s2

2 −b−1

×
∏b

l=1(1 − (−q)−l) ∏n−c−s
l=1 (1 − (−q)−l) ∏n−c−s−1

l=1 (1 − (−q)−l)∏b+1−s
l=1 (1 − (−q)−l) ∏s−1

l=1 (1 − (−q)−l) ∏n−h−c
l=1 (1 − (−q)−l) ∏h−s

l=1 (1 − (−q)−l)
.

Now, it is easy to see that the above two are the same. This finishes the proof of the lemma.
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□

Theorem 9.4. Let 0 ≤ a, b, c, h ≤ n and a+ b+ c = n. If c ≤ n− h, 1 ≤ a, and (a− 1, b+ 1, c) ̸=
(0, h, n− h), we have that

Dn,h(a, b, c) −Dn,h(a− 1, b+ 1, c) = −(−q)2n−h−1−b−2cDn−1,h−1(a− 1, b, c).

Proof. First, by Lemma 9.1, we have that

min(0+c,h)∑
i=0

Mn,h(a, b, c, i, 0) =(−1)n+c+1(−q)
c
2 + c2

2 −h2− n
2 −cn+hn+ n2

2 −ch

∏n−c
l=1 (1 − (−q)−l) ∏n−c−1

l=1 (1 − (−q)−l)∏n−h−c
l=1 (1 − (−q)−l) ∏h

l=1(1 − (−q)−l)
.

Since this does not depend on a, b, we have that

min(0+c,h)∑
i=0

Mn,h(a, b, c, i, 0) =
min(0+c,h)∑

i=0
Mn,h(a− 1, b+ 1, c, i, 0).

Since

Dn,h(a, b, c) =
min(h,b)∑

s=0

min(s+c,h)∑
i=s

Mn,h(a, b, c, i, s),

we have that

Dn,h(a, b, c) −Dn,h(a− 1, b+ 1, c)

=
min(h,b)∑

s=0

min(s+c,h)∑
i=s

Mn,h(a, b, c, i, s) −
min(h,b+1)∑

s=0

min(s+c,h)∑
i=s

Mn,h(a− 1, b+ 1, c, i, s)

=
min(h,b)∑

s=1

min(s+c,h)∑
i=s

Mn,h(a, b, c, i, s) −
min(h,b+1)∑

s=1

min(s+c,h)∑
i=s

Mn,h(a− 1, b+ 1, c, i, s).

Now, assume that h ≤ b. Then min(h, b) = h, min(h, b+1) = h, min(h−1, b) = h−1. Therefore,
by Lemma 9.3, we have

Dn,h(a, b, c) −Dn,h(a− 1, b+ 1, c)

=
h∑

s=1
{

min(s+c,h)∑
i=s

Mn,h(a, b, c, i, s) −
min(s+c,h)∑

i=s

Mn,h(a− 1, b+ 1, c, i, s)}

=
h−1∑
s=0

− (−q)2n−h−1−b−2c
min(s+c,h−1)∑

i=s

Mn−1,h−1(a− 1, b, c, i, s)

= −(−q)2n−h−1−b−2cDn−1,h−1(a− 1, b, c).

This finishes the proof of the theorem when h ≤ b.
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Now, assume that h > b. Then min(h, b) = b, min(h, b + 1) = b + 1. Therefore, by Lemma 9.3,
we have that

(9.7)

Dn,h(a, b, c) −Dn,h(a− 1, b+ 1, c)

=
b∑

s=1
{

min(s+c,h)∑
i=s

Mn,h(a, b, c, i, s) −
min(s+c,h)∑

i=s

Mn,h(a− 1, b+ 1, c, i, s)}

−
min(b+1+c,h)∑

i=b+1
Mn,h(a− 1, b+ 1, c, i, b+ 1)

=
b−1∑
s=0

− (−q)2n−h−1−b−2c
min(s+c,h−1)∑

i=s

Mn−1,h−1(a− 1, b, c, i, s)

−
min(b+1+c,h)∑

i=b+1
Mn,h(a− 1, b+ 1, c, i, b+ 1).

By Lemma 9.1, we have that

−
min(b+1+c,h)∑

i=b+1
Mn,h(a− 1, b+ 1, c, i, b+ 1)

= −(−1)n+c+b(−q) c
2 + c2

2 −h2− n
2 −cn+hn+ n2

2 −ch+ (b+1)
2 − (b+1)2

2

×
∏n−c−b−1

l=1 (1 − (−q)−l) ∏n−c−b−2
l=1 (1 − (−q)−l)∏n−h−c

l=1 (1 − (−q)−l) ∏h−b−1
l=1 (1 − (−q)−l)

= −(−1)n−1+c+b+1(−q)2n−h−1−b−2c+ c
2 + c2

2 −(h−1)2− n−1
2 −c(n−1)+(h−1)(n−1)+ (n−1)2

2 −c(h−1)+ b
2 − b2

2

×
∏n−1−c−b

l=1 (1 − (−q)−l) ∏n−1−c−b−1
l=1 (1 − (−q)−l)∏(n−1)−(h−1)−c

l=1 (1 − (−q)−l) ∏h−1−b
l=1 (1 − (−q)−l)

= −(−q)2n−h−1−b−2c
min(b+c,h−1)∑

i=b

Mn−1,h−1(a− 1, b, c, i, b).

Therefore, since min(h− 1, b) = b, (9.7) can be written as

Dn,h(a, b, c) −Dn,h(a− 1, b+ 1, c)

= −(−q)2n−h−1−b−2c
b∑

s=0

min(s+c,h−1)∑
i=s

Mn−1,h−1(a− 1, b, c, i, s)

= −(−q)2n−h−1−b−2cDn−1,h−1(a− 1, b, c).
This finishes the proof of the theorem. □

Lemma 9.5. Let 0 ≤ a, b, c, h ≤ n, and a+ b+ c = n. If c > n− h and a ̸= 0, we have that

Dn,h(a, b, c) = 0.

Therefore, for λ ∈ R0+
n such that t0(λ) > n− h, and t≥2(λ) ̸= 0, we have that

Dn,h(λ) = 0.

Proof. This follows from Lemma 9.1 (2), Definition 8.19 (3) and Proposition 8.20. □

Proposition 9.6. For 0 ≤ t ≤ h− 1, t ≡ h+ 1 (mod 2), and λ = (1t, 0n−t) ∈ R0+
n , we have that

Dn,h(λ) = 0.
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Proof. First, by Proposition 8.20, we have that

Dn,h(λ) = Dn,h(0, t, n− t) =
∑

0≤s≤min(h,b)
s≤i≤min(s+c,h)

Mn,h(a, b, c, i, s) + (−q)
−(h−t)(h+t+1)

2

1 − (−q)−(h−t) .

Before we start the proof of the proposition, let us say why we consider this case separately.
Recall from Definition 8.19 (1) that Cl(0, 0, k) is defined separately. If λ is not of the form (1t, 0n−t),
t < h, these constants Cl(0, 0, k)’s do not appear in the sum

∑
0≤s≤min(h,b)

s≤i≤min(s+c,h)

Mn,h(a, b, c, i, s). However,

if λ = (1t, 0n−t), t < h, Mn,h(0, t, n− t, i, t) has the term Ch+1−t(0, 0, n− i). Therefore, we need to
be careful when we compute Dn,h(0, t, n− t).

Now, let us start the proof of the proposition. Recall from the proof of the Lemma 9.1 that we
have

Mn,h(a, b, c, i, s) = Ch+1−s(a, b− s, c+ s− i)Yn,h(b, c, s)Xn,h(c, i, s),

Also, by (9.1), we have that

∑min(s+n−t,h)
i=s Yn,h(t, n− t, s)Xn,h(n− t, i, s) = Yn,h(t, n− t, s) ∑min(s+n−t,h)

i=s Xn,h(n− t, i, s) = 0

Also, note that min(h, t) = t and Ch+1−s(0, t − s, n − t + s − i) does not depend on i if s ̸= t.
Therefore, we have that

Dn,h(0, t, n− t) − (−q)
−(h−t)(h+t+1)

2

1 − (−q)−(h−t)

=
∑

0≤s≤min(h,t)
s≤i≤min(s+n−t,h)

Ch+1−s(0, t− s, n− t+ s− i)Yn,h(t, n− t, s)Xn,h(n− t, i, s)

=
t−1∑
s=0

Ch+1−s(0, t− s, n− t+ s)Yn,h(t, n− t, s)
min(s+n−t,h)∑

i=s

Xn,h(n− t, i, s)

+
h∑

i=t

Ch+1−t(0, 0, n− i)Yn,h(t, n− t, t)Xn,h(n− t, i, t)

=
h∑

i=t

Ch+1−t(0, 0, n− i)Yn,h(t, n− t, t)Xn,h(n− t, i, t).

Now, recall that Ch+1−t(0, 0, n− i) = Den′(In−i, In−i)
Den(In−i, In−i)

=
n−i∑
l=1

1
(−q)l − 1 .

This implies that it suffices to show that

(9.8) Yn,h(t, n− t, t)
h∑

i=t

(
n−i∑
l=1

1
(−q)l − 1)Xn,h(n− t, i, t) = −(−q)

−(h−t)(h+t+1)
2

1 − (−q)−(h−t) .
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First, we have that

h∑
i=t

(
n−i∑
l=1

1
(−q)l − 1)Xn,h(n− t, i, t) =

h∑
i=t

Xn,h(n− t, i, t)(
n−h∑
l=1

1
(−q)l − 1)

+
h−t−1∑

k=0

1
(−q)n−t−k − 1

t+k∑
i=t

Xn,h(n− t, i, t).

Since
h∑

i=t

Xn,h(n− t, i, t) = 0 (by (9.1)), we have that

(9.9)
h∑

i=t

(
n−i∑
l=1

1
(−q)l − 1)Xn,h(n− t, i, t) =

h−t−1∑
k=0

1
(−q)n−t−k − 1

t+k∑
i=t

Xn,h(n− t, i, t).

We claim that

(9.10)
t+k∑
i=t

Xn,h(n− t, i, t) = (−1)t+k(−q)
(t+k+1)(t−k)

2∏h−t−k−1
l=1 (1 − (−q)−l) ∏k

l=1(1 − (−q)−l)(1 − (−q)−(h−t))
.

Indeed, it is easy to see that this holds for k = 0. Now, assume that this holds for k. Then, we
have that

t+k+1∑
i=t

Xn,h(n− t, i, t) =
t+k+1∑

i=t

(−1)i(−q) i
2 − i2

2 +it∏h−i
l=1 (1 − (−q)−l) ∏i−t

l=1(1 − (−q)−l)

= (−1)t+k(−q)
(t+k+1)(t−k)

2

h−t−k−1∏
l=1

(1 − (−q)−l)
k∏

l=1
(1 − (−q)−l)(1 − (−q)−(h−t))

+ (−1)t+k+1(−q) t+k+1
2 − (t+k+1)2

2 +(t+k+1)t

h−t−k−1∏
l=1

(1 − (−q)−l)
k+1∏
l=1

(1 − (−q)−l)

= (−1)t+k+1(−q)
(t+k+1)(t−k)

2∏h−t−k−1
l=1 (1 − (−q)−l) ∏k+1

l=1 (1 − (−q)−l)
{−(1 − (−q)−(k+1))

1 − (−q)−(h−t) + 1}

= (−1)t+k+1(−q)
(t+k+1)(t−k)

2∏h−t−k−1
l=1 (1 − (−q)−l) ∏k+1

l=1 (1 − (−q)−l)
(−q)−(k+1)(1 − (−q)−h−t+k+1)

(1 − (−q)−(h−t)

= (−1)t+k+1(−q)
(t+k+2)(t−k−1)

2∏h−t−k−2
l=1 (1 − (−q)−l) ∏k+1

l=1 (1 − (−q)−l)(1 − (−q)−(h−t))
.

This shows that (9.10) holds.
Now, by (9.10), we have that (9.9) can be written as

(9.11)
h∑

i=t

(
n−i∑
l=1

1
(−q)l − 1)Xn,h(n− t, i, t) =

h−t−1∑
k=0

1
(−q)n−t−k − 1

t+k∑
i=t

Xn,h(n− t, i, t)

= (−1)t(−q) t2
2 + 3t

2 −n

(1 − (−q)−(h−t))
×

h−t−1∑
k=0

(−1)k(−q)− k(k−1)
2

(1 − (−q)−(n−t−k)) ∏h−t−k−1
l=1 (1 − (−q)−l) ∏k

l=1(1 − (−q)−l)
.
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In Lemma 9.7 below, we will prove that

(9.12)

h−t−1∑
k=0

(−1)k(−q)− k(k−1)
2

(1 − (−q)−(n−t−k)) ∏h−t−k−1
l=1 (1 − (−q)−l) ∏k

l=1(1 − (−q)−l)

= (−1)h−t−1(−q)− (h−t)(h−t−1)
2 (−q)−(n−h)(h−t−1)∏n−t

l=n−h+1(1 − (−q)−l)
.

Combining (9.11) and (9.12), we have that

Yn,h(t, n− t, t)
h∑

i=t

(
n−i∑
l=1

1
(−q)l − 1)Xn,h(n− t, i, t)

= (−1)h(−q)−h2+hn− t
2 + t2

2 −nt ∏n−t
l=1 (1 − (−q)−l)∏n−h

l=1 (1 − (−q)−l)

×(−1)t(−q) t2
2 + 3t

2 −n

(1 − (−q)−(h−t))
× (−1)h−t−1(−q)− (h−t)(h−t−1)

2 (−q)−(n−h)(h−t−1)∏n−t
l=n−h+1(1 − (−q)−l)

= −(−q)
−(h−t)(h+t+1)

2

1 − (−q)−(h−t) .

This finishes the proof of the proposition.
□

Lemma 9.7. For 0 ≤ t < h ≤ n, we have
h−t−1∑

k=0

(−1)k(−q)− k(k−1)
2

(1 − (−q)−(n−t−k)) ∏h−t−k−1
l=1 (1 − (−q)−l) ∏k

l=1(1 − (−q)−l)

= (−1)h−t−1(−q)− (h−t)(h−t−1)
2 (−q)−(n−h)(h−t−1)∏n−t

l=n−h+1(1 − (−q)−l)
.

Proof. For N > 0, we claim the following statement:
(9.13)

N−1∑
k=0

(−1)k(−q)− k(k−1)
2

(1 − (−q)−(N−k)X) ∏N−k−1
l=1 (1 − (−q)−l) ∏k

l=1(1 − (−q)−l)
= (−1)N−1(−q)− N(N−1)

2 XN−1∏N
l=1(1 − (−q)−lX)

,

which specializes to the statement of the lemma when X = (−q)−(n−h). Therefore it suffices to
show the claim (9.13).

Consider a Vandermonde matrix

X =

à
1 1 . . . 1
x1 x2 . . . xN

...
... . . . ...

xN−1
1 xN−1

2 . . . xN−1
N

í
,

and let X−1 = (yij)1≤i,j≤N . Note that yij is the XN−j-coefficient of
N∏

l=1,l ̸=i

1 − xlX

xi − xl
.
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Now, assume that xl = (−q)−l. Then, we have that y(N−k)j is the XN−j-coefficient of

N∏
l=1,l ̸=(N−k)

(1 − (−q)−lX)
(−q)−(N−k) − (−q)−l

=
(−1)N−k−1(−q)

(N−k)(N+k−1)
2

∏N
l=1,l ̸=(N−k)(1 − (−q)−lX)∏N−k−1

l=1 (1 − (−q)−l) ∏k
l=1(1 − (−q)−l)

= (−1)N−1(−q)
N(N−1)

2
(−1)k(−q)− k(k−1)

2
∏N

l=1,l ̸=(N−k)(1 − (−q)−lX)∏N−k−1
l=1 (1 − (−q)−l) ∏k

l=1(1 − (−q)−l)
.

Therefore, we have that
(9.14)

N∑
j=1

N−1∑
k=0

y(N−k)jX
N−j = (−1)N−1(−q)

N(N−1)
2

N−1∑
k=0

(−1)k(−q)− k(k−1)
2

∏N
l=1,l ̸=N−k(1 − (−q)−lX)∏N−k−1

l=1 (1 − (−q)−l) ∏k
l=1(1 − (−q)−l)

.

Now, note that

(1 0 . . . 0)X = (1 1 . . . 1) ⇐⇒ (1 0 . . . 0) = (1 1 . . . 1)X−1 = (
N∑

i=1
yi1

N∑
i=1
yi2 . . .

N∑
i=1
yiN ).

Hence, we have

(9.15)
N∑

j=1

N−1∑
k=0

y(N−k)jX
N−j = XN−1.

Therefore, (9.14) and (9.15) imply that (9.13) holds. This finishes the proof of the lemma. □

Now, let us state the following theorem.

Theorem 9.8. Assume that 0 ≤ h ≤ n.
(1) Assume that h+ 1 ≤ b ≤ n, and b+ c = n. Then, we have

Dn,h(0, b, c) =
∏b

l=h+1(1 − (−q)l)
(1 − (−q)b−h) .

(2) Assume that h− 1 ≤ b ≤ n, and b+ c = n− 1. Then, we have

Dn,h(1, b, c) =
®

1 if b = h− 1, h,∏b
l=h+1(1 − (−q)l) if b ≥ h+ 1.

Proof. Recall from Lemma 9.1 that for a = 0 or 1 (i.e., b+ c = n or n− 1, respectively), we have

(9.16)

Dn,h(a, b, c) = ∑min(h,b)
s=0

∑min(s+c,h)
i=s Mn,h(a, b, c, i, s)

= (−1)n+c+1(−q) c
2 + c2

2 −h2− n
2 −cn+hn+ n2

2 −ch

∏n−c−a
l=1 (1 − (−q)−l)∏n−h−c
l=1 (1 − (−q)−l)

×
∑min(h,b)

s=0
(−1)s(−q) s

2 − s2
2

∏n−c−s+a−1
l=1 (1 − (−q)−l)∏s

l=1(1 − (−q)−l) ∏h−s
l=1 (1 − (−q)−l)

.

First, assume that a = 1, b = h− 1, and c = n− h. Then, we have
min(h,b)∑

s=0

(−1)s(−q) s
2 − s2

2
∏n−c−s+a−1

l=1 (1 − (−q)−l)∏s
l=1(1 − (−q)−l) ∏h−s

l=1 (1 − (−q)−l)
=

h−1∑
s=0

(−1)s(−q) s
2 − s2

2∏s
l=1(1 − (−q)−l) = (−1)h−1(−q)− h(h−1)

2∏h−1
l=1 (1 − (−q)−l)

.
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Therefore, we have

Dn,h(1, h− 1, n− h) = (−1)n+c+h(−q)
c
2 + c2

2 −h2− n
2 −cn+hn+ n2

2 −ch−h(h−1)/2
∏h−1

l=1 (1 − (−q)−l)∏h−1
l=1 (1 − (−q)−l)

= (−q)
(n−c−h)(n−c+3h−1)

2 = 1.

Now, assume that b ≥ h. In this case, we have that min(h, b) = h. We claim that

(9.17)
h∑

s=0

(−1)s(−q) s
2 − s2

2
∏N−s

l=1 (1 − (−q)−l)∏s
l=1(1 − (−q)−l) ∏h−s

l=1 (1 − (−q)−l)
= (−1)h(−q)−hN+ h(h−1)

2
∏N−h

l=1 (1 − (−q)−l)∏h
l=1(1 − (−q)−l)

,

where N = n− c+ a− 1.
To prove (9.17), we define the following constants: for 0 ≤ k ≤ h, 1 ≤ t ≤ k + 1,

ωk,t =



(−1)k(−q)−(t−1)N+ (t−1)(t−2)
2 − (k−t+1)(k−t+2)

2
∏N−k

l=1 (1 − (−q)−l)∏k−t+1
l=1 (1 − (−q)−l) ∏h−k−1

l=1 (1 − (−q)−l) ∏h
l=h−t+1(1 − (−q)−l)

if k ≤ h− 1,

0 if k = h, t ̸= h+ 1,
(−1)h(−q)−hN+ h(h−1)

2
∏N−h

l=1 (1 − (−q)−l)∏h
l=1(1 − (−q)−l)

if k = h, t = h+ 1,

and

τk,t = (−1)k(−q)−tN+ t(t−1)
2 − (k−t−1)(k−t)

2
∏N−k

l=1 (1 − (−q)−l)∏k−t
l=1 (1 − (−q)−l) ∏h−k

l=1 (1 − (−q)−l) ∏h
l=h−t+1(1 − (−q)−l)

.

Note that

ω0,1 =
∏N

l=1(1 − (−q)−l)∏h
l=1(1 − (−q)−l)

= (−1)0(−q) 0
2 − 02

2
∏N−0

l=1 (1 − (−q)−l)∏0
l=1(1 − (−q)−l) ∏h−0

l=1 (1 − (−q)−l)
,

and

τk,k = (−1)k(−q)−kN+ k(k−1)
2

∏N−k
l=1 (1 − (−q)−l)∏h

l=1(1 − (−q)−l)
= ωk,k+1.

We claim the following two equations: for k ≥ 1, 2 ≤ t ≤ k, we have

(9.18) (−1)k(−q) k
2 − k2

2
∏N−k

l=1 (1 − (−q)−l)∏k
l=1(1 − (−q)−l) ∏h−k

l=1 (1 − (−q)−l)
+ ωk−1,1 = ωk,1 + τk,1,

and

(9.19) τk,t−1 + ωk−1,t = ωk,t + τk,t.

First, we have

(−1)k(−q) k
2 − k2

2
∏N−k

l=1 (1 − (−q)−l)∏k
l=1(1 − (−q)−l) ∏h−k

l=1 (1 − (−q)−l)
+ ωk−1,1

= (−1)k(−q) k
2 − k2

2
∏N−k

l=1 (1 − (−q)−l)∏k−1
l=1 (1 − (−q)−l) ∏h−k

l=1 (1 − (−q)−l)
{ 1

1 − (−q)−k
− 1 − (−q)−(N−k+1)

1 − (−q)−h
}

= (−1)k(−q) k
2 − k2

2
∏N−k

l=1 (1 − (−q)−l)∏k−1
l=1 (1 − (−q)−l) ∏h−k

l=1 (1 − (−q)−l)
{ (−q)−k(1 − (−q)−(h−k))

(1 − (−q)−k)(1 − (−q)−h) + (−q)−(N−k+1)

1 − (−q)−h
}

= ωk,1 + τk,1.
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This shows that (9.18) holds.
For (9.19), we have

τk,t−1 + ωk−1,t = (−1)k(−q)−(t−1)N+ (t−1)(t−2)
2 − (k−t)(k−t+1)

2
∏N−k

l=1 (1 − (−q)−l)∏k−t
l=1 (1 − (−q)−l) ∏h−k

l=1 (1 − (−q)−l) ∏h
l=h−t+2(1 − (−q)−l)

× { 1
(1 − (−q)−(k−t+1) − 1 − (−q)−(N−k+1)

1 − (−q)−(h−t+1) }

= (−1)k(−q)−(t−1)N+ (t−1)(t−2)
2 − (k−t)(k−t+1)

2
∏N−k

l=1 (1 − (−q)−l)∏k−t
l=1 (1 − (−q)−l) ∏h−k

l=1 (1 − (−q)−l) ∏h
l=h−t+2(1 − (−q)−l)

× { (−q)−(k−t+1)(1 − (−q)−(h−k))
(1 − (−q)−(k−t+1))(1 − (−q)−(h−t+1))

+ (−q)−(N−k+1)

1 − (−q)−(h−t+1) }

=ωk,t + τk,t.

This shows that (9.19) holds. Now, by (9.18) and (9.19), we have that for k ≥ 1,

(−1)k(−q) k
2 − k2

2
∏N−k

l=1 (1 − (−q)−l)∏k
l=1(1 − (−q)−l) ∏h−k

l=1 (1 − (−q)−l)
+

k∑
t=1
ωk−1,t +

k−1∑
t=1

τk,t =
k∑

t=1
ωk,t +

k∑
t=1
τk,t,

and hence

(9.20) (−1)k(−q) k
2 − k2

2
∏N−k

l=1 (1 − (−q)−l)∏k
l=1(1 − (−q)−l) ∏h−k

l=1 (1 − (−q)−l)
+

k∑
t=1
ωk−1,t =

k∑
t=1
ωk,t + τk,k =

k+1∑
t=1

ωk,t.

Here, we used τk,k = ωk,k+1 for the last identity.
Therefore, by (9.20), we have

h∑
k=1

(−1)k(−q) k
2 − k2

2
∏N−k

l=1 (1 − (−q)−l)∏k
l=1(1 − (−q)−l) ∏h−k

l=1 (1 − (−q)−l)
+

h∑
k=1

k∑
t=1
ωk−1,t =

h∑
k=1

k+1∑
t=1

ωk,t

⇐⇒
h∑

k=1

(−1)k(−q) k
2 − k2

2
∏N−k

l=1 (1 − (−q)−l)∏k
l=1(1 − (−q)−l) ∏h−k

l=1 (1 − (−q)−l)
+ ω0,1 =

h+1∑
t=1

ωh,t

⇐⇒
h∑

k=0

(−1)k(−q) k
2 − k2

2
∏N−k

l=1 (1 − (−q)−l)∏k
l=1(1 − (−q)−l) ∏h−k

l=1 (1 − (−q)−l)
= ωh,h+1 (since ωh,t = 0 for all t < h+ 1)

= (−1)h(−q)−hN+ h(h−1)
2

∏N−h
l=1 (1 − (−q)−l)∏h

l=1(1 − (−q)−l)
.

This shows that (9.17) holds.
Combining (9.16) and (9.17), we have

Dn,h(a, b, c) = (−1)n+c+h+1(−q)
c
2 + c2

2 −h2− n
2 −cn+hn+ n2

2 −ch−h(n−c+a−1)+ h(h−1)
2

×
∏n−c−a

l=1 (1 − (−q)−l) ∏n−c+a−1−h
l=1 (1 − (−q)−l)∏n−h−c

l=1 (1 − (−q)−l) ∏h
l=1(1 − (−q)−l)

.
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If a = 1, then we have b = n− c− 1, and

Dn,h(1, b, c) = (−1)n+c+h+1(−q)
(n−c−h−1)(n−c+h)

2

∏b
l=1(1 − (−q)−l)∏h
l=1(1 − (−q)−l)

=
b∏

l=h+1
(1 − (−q)l).

If a = 0, then we have b = n− c, and

Dn,h(0, b, c) = (−1)n+c+h+1(−q)
(n−c−h)(n−c+h−1)

2

∏b
l=1(1 − (−q)−l)

(1 − (−q)−(n−c−h)) ∏h
l=1(1 − (−q)−l)

=
∏b

l=h+1(1 − (−q)l)
(1 − (−q)b−h) .

This finishes the proof of the theorem. □

10. Fourier transform

In this section, we will prove certain theorems on the Fourier transform of the analytic side
of Conjecture 7.6. The main results of this section are Theorem 10.18, Theorem 10.19, Theorem
10.20, and Theorem 10.21. Recall that V is the space of special homomorphisms associated with
N [h]

n and it is split (resp. non-split) if h is odd (resp. even). For an integrable function f on V, we
denote by f̂ its Fourier transform

f̂(x) :=
∫
V
f(y)ψ(TrF/F0⟨x, y⟩)dy, x ∈ V.

For example, for an OF -lattice L ∈ V of rank n, we have

1̂L = vol(L)1L∨ = q−val(L)/21L∨ ,

where we recall that val(L) is the sum of fundamental invariants of L.

Definition 10.1. Let L ⊂ V be an OF -lattice of rank n and let L♭ ⊂ V be an OF -lattice of rank
n− 1.

(1) For simplicity, we set

Dn,h(L) := ∂Pdenn,h(L).

Assume that λ ∈ R0+
n be the fundamental invariants of L. Then by Corollary 8.7, we have

Dn,h(L) = Dn,h(λ),

where Dn,h(λ) is the Cho-Yamauchi constant defined in Definition 8.3.
(2) For x ∈ V\L♭

F , we define

∂Denn,h
L♭ (x) :=

∑
L♭⊂L′⊂L′∨

Dn,h(L′)1L′(x),

where L′ ⊂ V are OF -lattices of rank n.
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(3) For x ∈ V\L♭
F , and L′♭ ⊃ L♭, we define

∂Denn,h
L′♭◦(x) :=

∑
L′♭⊂L′⊂L′∨,L′∩L♭

F =L′♭

Dn,h(L′)1L′(x),

where L′ ⊂ V are OF -lattices of rank n.

Then, we have that
∂Denn,h

L♭ (x) =
∑

L♭⊂L′♭⊂(L′♭)∨

∂Denn,h
L′♭◦(x).

By definition, we have that’∂Den
n,h

L′♭◦(x) =
∑

L′♭⊂L′⊂L′∨,L′∩L♭
F =L′♭

Dn,h(L′)”1L′(x)

=
∑

L′♭⊂L′⊂L′∨,L′∩L♭
F =L′♭,x∈L′∨

Dn,h(L′) vol(L′).

Also, by [LZ22a, Lemma 7.2.1, Lemma 7.2.2, (7.4.2.3)], we have that

[((⟨x⟩ + L′♭)∨,≥0/L′♭)\(L♭
F /L

′♭)] ∼−→ {L′♭ ⊂ L′ ⊂ L′∨, L′ ∩ L♭
F = L′♭, x ∈ L′∨}

u 7−→ L′♭ + ⟨u⟩.

Now, assume that x ⊥ L♭ and val(⟨x, x⟩) ≤ −1. Then, as in the proof of [LZ22a, Lemma 7.4.2],
we have that

(⟨x⟩ + L′♭)∨,≥0 = (L′♭)∨,≥0 k ⟨x⟩∨,

and
[((⟨x⟩ + L′♭)∨,≥0/L′♭)\(L♭

F /L
′♭)] ∼−→ (L′♭)∨,≥0/L′♭ × (⟨x⟩∨\{0})/O×

F .

Therefore, we have that

(L′♭)∨,≥0/L′♭ × (⟨x⟩∨\{0})/O×
F

∼−→ {L′♭ ⊂ L′ ⊂ L′∨, L′ ∩ L♭
F = L′♭, x ∈ L′∨}

(u♭, u⊥) 7−→ L′♭ + ⟨u♭ + u⊥⟩,
and
(10.1)’∂Den

n,h

L′♭◦(x) =
∑

(u♭,u⊥)∈(L′♭)∨,≥0/L′♭×(⟨x⟩∨\{0})/O×
F

Dn,h(L′♭ + ⟨u♭ + u⊥⟩) vol(L′♭ + ⟨u♭ + u⊥⟩).

Now, we need to compute Dn,h(L′♭ + ⟨u♭ + u⊥⟩). First, let us define the following notations.

Definition 10.2. For λ ∈ R0+
n−1, we let Lλ ⊂ V be an OF -lattice of rank n − 1 with hermitian

matrix Aλ. Consider a basis B = {x1, . . . , xn−1} such that the hermitian matrix of Lλ with respect
to B is Aλ.

(1) For i ≥ 0, we define Lλ≥i to be the sublattice of Lλ generated by {x1, . . . , xt≥i(λ)}. Therefore,
the hermitian matrix of Lλ≥i isà

πλ1

πλ2

. . .
π

λt≥i(λ)

í
.
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In particular, Lλ≥0 = Lλ.
(2) For i ≥ 0, we define Lλ=i to be the sublattice of Lλ generated by xj ’s such that val((xj , xj)) =

i. Therefore, the hermitian matrix of Lλ=i is πiIti(λ), where ti is defined in Definition 8.11.
(3) For i ≥ j ≥ 0, we define L(λ≥i)−j be an OF -lattice of rank t≥i(λ) with hermitian matrixà

πλ1−j

πλ2−j

. . .
π

λt≥i(λ)−j

í
.

Note that L(λ≥i)−j is not necessarily a sublattice in V.
(4) For an OF -lattice L, we define

µ(L) = |(L∨)≥0/L|,
µ+(L) = |(πL∨)≥1/L|,
µ++(L) = |(π2L∨)≥2/L|.

Consider a basis B = {x1, x2, . . . , xa, xa+1,. . . ,xa+b,. . . , xa+b+c} of L′♭ (a+b+c = n−1) such that
the hermitian matrix of L with respect to B is Aλ where λ = (λ1, . . . , λa, 1b, 0c) ∈ R0+

n−1, λi ≥ 2.
To simplify notation, we abbreviate Lλ≥2, Lλ=1 to L′♭

2 , L′♭
1 , respectively. In other words, L′♭

2 is the
OF -lattice generated by {x1, . . . , xa}, and L′♭

1 is the OF -lattice generated by {xa+1, . . . , xa+b}.
Note that

(L′♭)∨,≥0/L′♭ = (L′♭
2 k L′♭

1 )∨,≥0/(L′♭
2 k L′♭

1 ).
Then, we have the following propositions.

Proposition 10.3. Assume that val((u⊥, u⊥)) ≥ 2, then we have the followings.
(1) (Case 1-1) If u♭ ∈ (π2(L′♭

2 )∨ k π(L′♭
1 )∨)≥2,

Dn,h(L′♭ + ⟨u♭ + u⊥⟩) = Dn,h(a+ 1, b, c).

(2) (Case 1-2) If u♭ ∈ (π2(L′♭
2 )∨ k π(L′♭

1 )∨)≥1 − (π2(L′♭
2 )∨ k π(L′♭

1 )∨)≥2,

Dn,h(L′♭ + ⟨u♭ + u⊥⟩) = Dn,h(a, b+ 1, c).

(3) (Case 1-3) If u♭ ∈ (π2(L′♭
2 )∨ k π(L′♭

1 )∨)≥0 − (π2(L′♭
2 )∨ k π(L′♭

1 )∨)≥1,

Dn,h(L′♭ + ⟨u♭ + u⊥⟩) = Dn,h(a, b, c+ 1).

(4) (Case 2-1) If u♭ ∈ (π2(L′♭
2 )∨)≥0 k ((L′♭

1 )∨ − π(L′♭
1 )∨)≥0,

Dn,h(L′♭ + ⟨u♭ + u⊥⟩) = Dn,h(a+ 1, b− 2, c+ 2).

(5) (Case 2-2) If

u♭ ∈ ((π2(L′♭
2 )∨) k ((L′♭

1 )∨ − π(L′♭
1 )∨))≥0 − (π2(L′♭

2 )∨)≥0 k ((L′♭
1 )∨ − π(L′♭

1 )∨)≥0,

Dn,h(L′♭ + ⟨u♭ + u⊥⟩) = Dn,h(a, b− 1, c+ 2).
(6) (Case 3-1) If u♭ ∈ ((π(L′♭

2 )∨ − π2(L′♭
2 )∨) k (π(L′♭

1 )∨))≥1,

Dn,h(L′♭ + ⟨u♭ + u⊥⟩) = Dn,h(a− 1, b+ 2, c).
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(7) (Case 3-2) If u♭ ∈ ((π(L′♭
2 )∨−π2(L′♭

2 )∨)k(π(L′♭
1 )∨))≥0−((π(L′♭

2 )∨−π2(L′♭
2 )∨)k(π(L′♭

1 )∨))≥1,

Dn,h(L′♭ + ⟨u♭ + u⊥⟩) = Dn,h(a, b, c+ 1).

(8) (Case 4-1) If u♭ ∈ (π(L′♭
2 )∨ − π2(L′♭

2 )∨)≥0 k ((L′♭
1 )∨ − π(L′♭

1 )∨)≥0,

Dn,h(L′♭ + ⟨u♭ + u⊥⟩) = Dn,h(a+ 1, b− 2, c+ 2).

(9) (Case 4-2) If

u♭ ∈ ((π(L′♭
2 )∨ − π2(L′♭

2 )∨) k ((L′♭
1 )∨ − π(L′♭

1 )∨))≥0 − (π(L′♭
2 )∨ − π2(L′♭

2 )∨)≥0 k ((L′♭
1 )∨ − π(L′♭

1 )∨)≥0,

Dn,h(L′♭ + ⟨u♭ + u⊥⟩) = Dn,h(a, b− 1, c+ 2).
(10) (Case 5) If u♭ ∈ (((L′♭

2 )∨ − π(L′♭
2 )∨) k (L′♭

1 )∨)≥0,

Dn,h(L′♭ + ⟨u♭ + u⊥⟩) = Dn,h(a− 1, b, c+ 2).

Proof. This is a linear algebra problem, so we skip the proof of the proposition. □

Proposition 10.4. Assume that val((u⊥, u⊥)) = 1, then we have the followings.
(1) (Case 1-1) If u♭ ∈ (π2(L′♭

2 )∨ k π(L′♭
1 )∨)≥2,

Dn,h(L′♭ + ⟨u♭ + u⊥⟩) = Dn,h(a, b+ 1, c).

(2) (Case 1-2-1) If u♭ ∈ (π2(L′♭
2 )∨ kπ(L′♭

1 )∨)≥1 − (π2(L′♭
2 )∨ kπ(L′♭

1 )∨)≥2, and val(⟨u♭ +u⊥, u♭ +
u⊥⟩) = 1

Dn,h(L′♭ + ⟨u♭ + u⊥⟩) = Dn,h(a, b+ 1, c).
(3) (Case 1-2-2) If u♭ ∈ (π2(L′♭

2 )∨ kπ(L′♭
1 )∨)≥1 − (π2(L′♭

2 )∨ kπ(L′♭
1 )∨)≥2, and val(⟨u♭ +u⊥, u♭ +

u⊥⟩) ≥ 2, we have

Dn,h(L′♭ + ⟨u♭ + u⊥⟩) = Dn,h(a+ 1, b, c).

(4) (Case 1-3) If u♭ ∈ (π2(L′♭
2 )∨ k π(L′♭

1 )∨)≥0 − (π2(L′♭
2 )∨ k π(L′♭

1 )∨)≥1,

Dn,h(L′♭ + ⟨u♭ + u⊥⟩) = Dn,h(a, b, c+ 1).

(5) (Case 2-1) If u♭ ∈ (π2(L′♭
2 )∨)≥0 k ((L′♭

1 )∨ − π(L′♭
1 )∨)≥0,

Dn,h(L′♭ + ⟨u♭ + u⊥⟩) = Dn,h(a+ 1, b− 2, c+ 2).

(6) (Case 2-2) If

u♭ ∈ ((π2(L′♭
2 )∨) k ((L′♭

1 )∨ − π(L′♭
1 )∨))≥0 − (π2(L′♭

2 )∨)≥0 k ((L′♭
1 )∨ − π(L′♭

1 )∨)≥0,

Dn,h(L′♭ + ⟨u♭ + u⊥⟩) = Dn,h(a, b− 1, c+ 2).
(7) (Case 3-1) If u♭ ∈ ((π(L′♭

2 )∨ − π2(L′♭
2 )∨) k (π(L′♭

1 )∨))≥1,

Dn,h(L′♭ + ⟨u♭ + u⊥⟩) = Dn,h(a− 1, b+ 2, c).

(8) (Case 3-2) If u♭ ∈ ((π(L′♭
2 )∨−π2(L′♭

2 )∨)k(π(L′♭
1 )∨))≥0−((π(L′♭

2 )∨−π2(L′♭
2 )∨)k(π(L′♭

1 )∨))≥1,

Dn,h(L′♭ + ⟨u♭ + u⊥⟩) = Dn,h(a, b, c+ 1).

(9) (Case 4-1) If u♭ ∈ (π(L′♭
2 )∨ − π2(L′♭

2 )∨)≥0 k ((L′♭
1 )∨ − π(L′♭

1 )∨)≥0,

Dn,h(L′♭ + ⟨u♭ + u⊥⟩) = Dn,h(a+ 1, b− 2, c+ 2).
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(10) (Case 4-2) If

u♭ ∈ ((π(L′♭
2 )∨ − π2(L′♭

2 )∨) k ((L′♭
1 )∨ − π(L′♭

1 )∨))≥0 − (π(L′♭
2 )∨ − π2(L′♭

2 )∨)≥0 k ((L′♭
1 )∨ − π(L′♭

1 )∨)≥0,

Dn,h(L′♭ + ⟨u♭ + u⊥⟩) = Dn,h(a, b− 1, c+ 2).
(11) (Case 5) If u♭ ∈ (((L′♭

2 )∨ − π(L′♭
2 )∨) k (L′♭

1 )∨)≥0,

Dn,h(L′♭ + ⟨u♭ + u⊥⟩) = Dn,h(a− 1, b, c+ 2).

Proof. This is a linear algebra problem, so we skip the proof of the proposition. □

Remark 10.5. We note that the only difference between the case val((u⊥, u⊥)) ≥ 2 (Proposition
10.3) and the case val((u⊥, u⊥)) = 1 (Proposition 10.4) is the cases 1-1, 1-2, and 1-3.

Proposition 10.6. Assume that λ ∈ R0+
n and Lλ is an OF -lattice with hermitian matrix Aλ.

(1) If λ ≥ (1, . . . , 1), we have
µ+(Lλ) = µ(Lλ−1).

(2) If λ ≥ (2, . . . , 2), we have
µ++(Lλ) = µ+(Lλ−1).

Proof. By definition, we have that

µ(Lλ−1) = |(L∨
λ−1)≥0/Lλ−1|,

µ+(Lλ) = |(πL∨
λ)≥1/Lλ|.

Note that the fundamental invariants of L∨
λ−1 (resp. πL∨

λ)) are (−λ1 + 1, . . . ,−λn + 1) (resp.
(−λ1 + 2, . . . ,−λn + 2)). Now, for (L∨

λ−1)≥0/Lλ−1, and the hermitian form ⟨·, ·⟩, we consider the
same set with the hermitian form π⟨·, ·⟩. Then, this is isomorphic to (πL∨

λ)≥1/Lλ. This proves (1).
The proof of (2) is similar. □

Proposition 10.7. For λ ∈ R0+
n−1 and Lλ = Lλ≥2 k Lλ=1 =: L2 k L1, we have the followings.

(1) (Case 1-1) We have that

|(π2(L2)∨ k π(L1)∨)≥2/L2 k L1| = µ(L(λ≥2)−2).

(2) (Case 1-2) We have that

|{(π2(L2)∨ k π(L1)∨)≥1 − (π2(L2)∨ k π(L1)∨)≥2}/L2 k L1|
= q2t≥3(λ)µ(L(λ≥3)−3) − µ(L(λ≥2)−2).

(3) (Case 1-3+Case 3-2) We have that

|{(π2(L2)∨ k π(L1)∨)≥0 − (π2(L2)∨ k π(L1)∨)≥1}/L2 k L1|
+|{((π(L2)∨ − π2(Lλ≥2)∨) k (π(L1)∨))≥0 − ((π(L2)∨ − π2(L2)∨) k (π(L1)∨))≥1}/L2 k L1|
= q2t≥2(λ)µ(L(λ≥2)−2) − µ(L(λ≥2)−1).

(4) (Case 2-1+Case 4-1) We have that

|{(π2(L′♭
2 )∨)≥0 k ((L′♭

1 )∨ − π(L′♭
1 )∨)≥0}/L2 k L1|

+|{(π(L′♭
2 )∨ − π2(L′♭

2 )∨)≥0 k ((L′♭
1 )∨ − π(L′♭

1 )∨)≥0}/L2 k L1|
= q2t≥2(λ)µ(L(λ≥2)−2) × (µ(Lλ=1) − 1).
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(5) (Case 2-2+Case 4-2) We have that

|{((π2(L2)∨) k ((L1)∨ − π(L1)∨))≥0 − (π2(L2)∨)≥0 k ((L1)∨ − π(L1)∨)≥0}/L2 k L1|
+|{((π(L2)∨ − π2(L2)∨) k ((L1)∨ − π(L1)∨))≥0}/L2 k L1|
−|{(π(L2)∨ − π2(L2)∨)≥0 k ((L1)∨ − π(L1)∨)≥0}/L2 k L1|
= q2t≥2(λ){µ(L(λ≥2)−2 k Lλ=1) − µ(L(λ≥2)−2)µ(Lλ=1)}.

(6) (Case 3-1) We have that

|{((π(L2)∨ − π2(L2)∨) k (π(L1)∨))≥1}/L2 k L1| = µ(L(λ≥2)−1) − q2t≥3(λ)µ(L(λ≥3)−3).

(7) (Case 5) We have that

|{(((L2)∨ − π(L2)∨) k (L1)∨)≥0}/L2 k L1| = µ(Lλ≥2 k Lλ=1) − q2t≥2(λ)µ(L(λ≥2)−2 k Lλ=1).

Here, we choose the following convention: ∀i ≥ j ≥ 0, if Lλ≥i is empty, then µ(L(λ≥i)−j) = 1.

Proof. We only prove the cases: (Case 1-2) and (Case 2-2+Case 4-2). The other cases can be
proved similarly.

In (Case 1-2), note that π(L1)∨ = L1. Therefore, we have

|{(π2(L2)∨ k π(L1)∨)≥1 − (π2(L2)∨ k π(L1)∨)≥2}/L2 k L1| = |{(π2(L2)∨)≥1 − (π2(L2)∨)≥2}/L2|.

If Lλ≥3 is empty, then we have that π2L∨
2 = L2 = Lλ=2. Therefore,

|{(π2(L2)∨)≥1}/L2| = |{(π2(L2)∨)≥2}/L2| = 1.

If Lλ≥3 is not empty, then we have

|{(π2(L2)∨)≥1}/L2| = |{(π2L∨
λ≥3)≥1}/Lλ≥3| = q2t≥3(λ)|{(π(π−1Lλ≥3)∨)≥1}/π−1Lλ≥3|

= q2t≥3(λ)µ+(π−1Lλ≥3) = q2t≥3(λ)µ+(L(λ≥3)−2) = q2t≥3(λ)µ(L(λ≥3)−3).

Here, we used Proposition 10.6. Also, by definition, we have that |{(π2(L2)∨)≥2}/L2| = µ++(L2) =
µ(L(λ≥2)−2). Therefore, we have that (Case 1-2) is q2t≥3(λ)µ(L(λ≥3)−3) − µ(L(λ≥2)−2).

Next, consider the case (Case 2-2+Case 4-2). First, note that

|{((π2(L2)∨) k ((L1)∨ − π(L1)∨))≥0 − (π2(L2)∨)≥0 k ((L1)∨ − π(L1)∨)≥0}/L2 k L1|
+|{((π(L2)∨ − π2(L2)∨) k ((L1)∨ − π(L1)∨))≥0}/L2 k L1|
−|{(π(L2)∨ − π2(L2)∨)≥0 k ((L1)∨ − π(L1)∨)≥0}/L2 k L1|
= |{((π(L2)∨) k ((L1)∨ − π(L1)∨))≥0 − (π(L2)∨)≥0 k ((L1)∨ − π(L1)∨)≥0}/L2 k L1|.

Now, note that

|{((π(L2)∨) k (L∨
1 ))≥0}/L2 k L1| = q2t≥2(λ)|{((π−1L2)∨ k (L∨

1 ))≥0}/π−1L2 k L1|

= q2t≥2(λ)µ(π−1L2 k L1)

= q2t≥2(λ)µ(L(λ≥2)−2 k Lλ=1).

Also, since πL∨
1 = L1, we have

|{((π(L2)∨) k (πL∨
1 ))≥0}/L2 k L1| = |{((π(L2)∨))≥0}/L2| = q2t≥2(λ)µ(L(λ≥2)−2),

|{(π(L2)∨)≥0 k ((L1)∨)≥0}/L2 k L1| = q2t≥2(λ)µ(L(λ≥2)−2) × µ(Lλ=1),
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and

|{(π(L2)∨)≥0 k (π(L1)∨)≥0}/L2 k L1| = |{((π(L2)∨))≥0}/L2| = q2t≥2(λ)µ(L(λ≥2)−2).

Combining these, we have that (Case 2-2+Case 4-2) is

q2t≥2(λ)µ(L(λ≥2)−2 k Lλ=1) − q2t≥2(λ)µ(L(λ≥2)−2) × µ(Lλ=1).

This finishes the proof of the proposition in the case (Case 2-2+Case 4-2). □

Proposition 10.8. (cf. [LZ22b, Lemma 8.2.3], [HLSY23, Lemma 8.4]) Assume that L (resp. M) is
an OF -lattice of rank n with hermitian matrix Aλ (resp. Aη) such that λ, η ∈ R0+

n , λ, η ≥ (1, . . . , 1).
Assume further that L ⊂ M ⊂ π−1L. Then, we have

|((L∨)≥0\(M∨)≥0)/L| = q2n−1|((πL∨)≥1\(πM∨)≥1)/L|.

Proof. Here, we follow the proof of [LZ22b, Lemma 8.2.3]. Consider the map

((L∨)≥0\(M∨)≥0)/L −→ ((πL∨)≥1\(πM∨)≥1)/L
x 7−→ πx.

To prove the proposition, it suffices to show that the above map is surjective and every fiber has
size q2n−1. Choose x ∈ (πL∨)≥1\(πM∨)≥1. Then the fiber of x is given by

{ 1
π

(x+ y) ∈ (L∨)≥0, y ∈ L/πL}.

Since x ∈ πL∨, the condition 1
π

(x+ y) ∈ (L∨)≥0 is equivalent to

y ∈ L ∩ πL∨/πL, and (y + x, y + x) ≡ 0(mod π2).

Choose a basis e = {e1, . . . , en} of L such that the hermitian matrix of L with respect to e is
Aλ. Then, we have

πL∨ = ⊕iOF (π−λi+1ei).

Write
x =

∑
i

µiπ
−λi+1ei, µi ∈ OF ,

y =
∑

i

νiei, νi ∈ OF .

Then, we have
(y, y) ≡

∑
λi=1

(νiei, νiei) ≡
∑

λi=1
πνiνi(mod π2),

(y, x) =
∑

i

(νiei, µiπ
−λi+1ei) =

∑
i

νiµiπ.

Since x ∈ (πL∨)≥1, the condition (y + x, y + x) ≡ 0(mod π2) is equivalent to

(10.2) 1
π

(x, x) +
∑

λi=1
(νiνi + νiµi + νiµi) +

∑
λi>1

(νiµi + νiµi) ≡ 0(mod π).

Since x /∈ πM∨, there is at least one i such that µi ̸≡ 0(mod π), and λi > 1. Let µk be such a
coefficient, i.e., µk ̸≡ 0(mod π), and λk > 1.
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Now, let β = 1
π

(x, x) +
∑

λi=1
(νiνi + νiµi + νiµi). Then, (10.2) can be written as

β +
∑

λi>1
(νiµi + νiµi) ≡ 0(mod π)

⇐⇒ Tr(µkνk) ≡ −β −
∑

λi>1,i ̸=k

(νiµi + νiµi)(mod π).

Choose any νi, i ̸= k, so there are q2(n−1)-choices. Also, Tr : Fq2 → Fq is surjective and every fiber
has size q. Therefore, for each {νi}i ̸=k, there are q-solutions of νk, and hence

|{ 1
π

(x+ y) ∈ (L∨)≥0, y ∈ L/πL}| = q2n−1.

This finishes the proof of the proposition.
□

Proposition 10.9. (cf. [LZ22b, Lemma 8.2.6], [HLSY23, Lemma 8.6]) Assume that L is an OF -
lattice of rank n and e = {e1, . . . , en} is a basis of L. Also, assume that the hermitian matrix of L
with respect to e is Aλ where λ ∈ R0+

n , λ ≥ (1, . . . , 1). We choose an OF -lattice M as follows.

(1) If λ1 ≥ 3, we choose an OF -lattice M ⊃ L such that M = OF ( 1
π
e1)⊕ ⊕i ̸=1 OF (ei) with

fundamental invariants (λ1 − 2, λ2, . . . , λn).
(2) If λ1 = λ2 = 2 (so, λi ≤ 2 for all i), we choose an OF -lattice M ⊃ L such that the

fundamental invariants of M are (λ1 − 1, λ2 − 1, λ3, . . . , λn).
Then, we have that

|((πL∨)≥0\(πM∨)≥0)/L| = q|((πL∨)≥1\(πM∨)≥1)/L|.

Proof. Here, we follow the proof of [LZ22b, Lemma 8.2.6].
(1) In this case, we have that

πL∨ = ⊕iOF (π−λi+1ei),

and
πM∨ = OF (π−λ1+2e1) ⊕ (

⊕
i ̸=1

OF (π−λi+1ei)).

Fix an element x0 =
∑
i ̸=1
µiπ

−λi+1ei, µi ∈ OF . Consider the sets

S≥0
x0

:= {x ∈ (πL∨)≥0\(πM∨)≥0 | x = x0 + µ1π
−λ1+1e1, µ1 ∈ OF }/L

S≥1
x0

:= {x ∈ (πL∨)≥1\(πM∨)≥1 | x = x0 + µ1π
−λ1+1e1, µ1 ∈ OF }/L.

Then, it suffices to show that |S≥0
x0 | = q|S≥1

x0 |.
Note that x /∈ πM∨ if and only if µ1 ∈ O×

F . Also, we have

(x, x) = (x0, x0) + µ1µ1π
−λ1+2.

Therefore, we have that

x ∈ S≥0
x0 if and only if πλ1−2(x0, x0) + µ1µ1 ≡ 0(mod πλ1−2), µ1 ∈ O×

F ,

x ∈ S≥1
x0 if and only if πλ1−2(x0, x0) + µ1µ1 ≡ 0(mod πλ1−1), µ1 ∈ O×

F .
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Let us write
µ1 = b0 + b1π + b2π

2 + . . . ,

−πλ1−2(x0, x0) = c0 + c1π + c2π
2 + . . . .

Then x ∈ S≥0
x0 if and only if b0 ∈ O×

F and

(10.3)

c0 = b0b0,

c1 = b0b1 + b1b0,
...
cλ1−3 = b0bλ1−3 + · · · + bλ1−3b0.

Also, x ∈ S≥1
x0 if and only if x ∈ S≥0

x0 and

(10.4) cλ1−2 = b0bλ1−2 + · · · + bλ1−2b0

⇐⇒ Tr(b0bλ1−2) = cλ1−2 − b1bλ1−3 − · · · − bλ1−3b1.

Now, for each {b0, b1, . . . , bλ1−3} satisfying (10.3), there are q2-choices of bλ1−2 so that
x ∈ S≥0

x0 . Also, there are q-choices of bλ1−2 so that (10.4) is true, and hence x ∈ S≥1
x0 . This

shows that |S≥0
x0 | = q|S≥1

x0 |.
(2) In this case, we may choose a basis f = {f1, f2, . . . , fn} of πM∨ such that the hermitian

matrix of πM∨ with respect to f is
π1

π1

π−λ3+2

. . .
π−λn+2

 ,

and πL∨ = OF (π−1(εf1 + f2)) ⊕OF (π−1(f1 − εf2)) ⊕
⊕

i ̸=1,2OF (fi), for some ε such that
1 + εε = π. Then, {π−1(εf1 + f2), f2, f3, . . . , fn} forms a basis for πL∨.

We fix x0 =
∑
i ̸=1
µifi, µi ∈ OF , and let x0 = x1 + µ2f2. Then, consider the sets

S≥0
x0

:= {x ∈ (πL∨)≥0\(πM∨)≥0 | x = x0 + µ1π
−1(εf1 + f2), µ1 ∈ OF }/L,

S≥1
x0

:= {x ∈ (πL∨)≥1\(πM∨)≥1 | x = x0 + µ1π
−1(εf1 + f2), µ1 ∈ OF }/L.

Note that x /∈ πM∨ if and only if µ1 ∈ O×
F . Also, we have that

(x, x) = (x1 + µ2f2 + µ1π
−1(εf1 + f2), x1 + µ2f2 + µ1π

−1(εf1 + f2))

= (x1, x1) + µ2µ2π + µ2µ1 + µ2µ1 + µ1µ1.

Therefore, we have

x ∈ S≥0
x0 if and only if (x1, x1) + µ2µ2π + µ2µ1 + µ2µ1 + µ1µ1 ∈ OF , and µ1 ∈ O×

F ,

x ∈ S≥1
x0 if and only if (x1, x1) + µ2µ2π + µ2µ1 + µ2µ1 + µ1µ1 ≡ 0(mod π), and µ1 ∈ O×

F .

Write

−(x1, x1) = d0 + d1π + d2π
2 + · · · ,

µ1 = b0 + b1π + b2π
2 + · · · ,
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µ2 = c0 + c1π + c2π
2 + · · · .

Then, x ∈ S≥0
x0 if and only if b0 ∈ O×

F . Therefore, there are q2-choices of c0.
Also, x ∈ S≥1

x0 if and only if b0 ∈ O×
F and

d0 = c0b0 + c0b0 + b0b0

⇐⇒ Tr(c0b0) = d0 − b0b0.

Therefore, for each b0 ∈ O×
F , there are q-choices of c0. This shows that |S≥0

x0 | = q|S≥1
x0 |. This

finishes the proof of the proposition.
□

Proposition 10.10. Assume that λ ∈ R0+
n .

(1) If λ1 ≥ 3, we define

η = (λ1 − 2, λ2, . . . , λn) ∈ R0+
n ,

(if necessary, we change the order of ηi’s so that η ∈ R0+
n ).

Then, we have

µ(Lλ) = µ(Lλ≥1)

= q2µ(Lη≥1) + q2t≥1(λ)+2t≥2(λ)−2µ(L(λ≥2)−2) − q2t≥1(λ)+2t≥2(λ)µ(L(η≥2)−2).

(2) If λ1 = λ2 = 2, we define

η = (λ1 − 1, λ2 − 1, . . . , λn) ∈ R0+
n ,

(if necessary, we change the order of ηi’s so that η ∈ R0+
n ).

Then, we have

µ(Lλ) = µ(Lλ≥1)

= q2µ(Lη≥1) + q2t≥1(λ)+2t≥2(λ)−2µ(L(λ≥2)−2) − q2t≥1(η)+2t≥2(η)µ(L(η≥2)−2).

Here, we choose the following convention: If Lλ≥2 is empty, we assume µ(L(λ≥2)−2) = 1.

Proof. By Proposition 10.8 and Proposition 10.9, we have

|((L∨
λ)≥0\(L∨

η )≥0)/Lλ| = q2t≥1(λ)−1|((πL∨
λ)≥1\(πL∨

η )≥1)/Lλ|,

and
|((πL∨

λ)≥0\(πL∨
η )≥0)/Lλ| = q|((πL∨

λ)≥1\(πL∨
η )≥1)/Lλ|.

Therefore, we have

(10.5) |((L∨
λ)≥0\(L∨

η )≥0)/Lλ| = q2t≥1(λ)−2|((πL∨
λ)≥0\(πL∨

η )≥0)/Lλ|.

Note that
|(L∨

λ)≥0/Lλ| = µ(Lλ),
|(L∨

η )≥0/Lλ| = q2|(L∨
η )≥0/Lη| = q2µ(Lη).
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Also, note that (πL∨
λ)≥0/Lλ = (π(Lλ≥2)∨)≥0/Lλ≥2, and it is trivial if Lλ≥2 is empty. Since the

fundamental invariants of Lλ≥2 are at least 2, any element x of π−1Lλ≥2 has valuation at least 0.
Therefore, we have

|(πL∨
λ)≥0/Lλ| = |(π(Lλ≥2)∨)≥0/Lλ≥2| = q2t≥2(λ)|((π−1Lλ≥2)∨)≥0/(π−1Lλ≥2)|

= q2t≥2(λ)µ(π−1Lλ≥2) = q2t≥2(λ)µ(L(λ≥2)−2).

Similarly, we have

|(πL∨
η )≥0/Lλ| = q2|(πL∨

η )≥0/Lη| = q2+2t≥2(η)µ(L(η≥2)−2).

Now, by (10.5) and the fact that t≥1(λ) = t≥1(η), we have the proof of the proposition. □

Lemma 10.11. For λ ∈ R0+
n , λ ≥ (1, 1, . . . , 1), we have that

µ(Lλ) = q2n−1µ(Lλ−1) − (−q)|λ|−1(q − 1).

Proof. First, consider the case λ = (1, 1, . . . , 1). Then, it is easy to see that (see [VW11, Example
5.6], for example)

µ(L1,...,1) = |{(x1, . . . , xn) ∈ Fn
q | xq+1

1 + · · · + xq+1
n = 0}|

= q2n−1 + (−q)n + (−q)n−1 = q2n−1µ(L0,...,0) − (−q)n−1(q − 1).

Similarly, if λ = (2,
n−1︷ ︸︸ ︷

1, . . . , 1), we have that

µ(Lλ) = |((L2,1,...,1)∨)≥0/L2,1,...,1| = q2µ(L1, . . . , 1︸ ︷︷ ︸
n−1

) = q2n−1 + (−q)n+1 + (−q)n

= q2n−1µ(L1) − (−q)n(q − 1).

Now, we will prove the lemma by induction on |λ|.

Assume that λ = (
a︷ ︸︸ ︷

2, . . . , 2,
b︷ ︸︸ ︷

1, . . . , 1), a ≥ 2, and let η = (
a−2︷ ︸︸ ︷

2, . . . , 2,
b+2︷ ︸︸ ︷

1, . . . , 1). Then, by Proposition
10.10 (2), we have

µ(Lλ) = q2µ(Lη) + q2n+2a−2 − q2n+2a−4.

Also, we have
µ(Lλ−1) = µ(L1, . . . , 1︸ ︷︷ ︸

a

) = q2a−1 + (−q)a + (−q)a−1,

q2µ(Lη−1) = q2µ(L1, . . . , 1︸ ︷︷ ︸
a−2

) = q2a−3 + (−q)a + (−q)a−1,

µ(Lλ−1) = q2µ(Lη−1) + q2a−1 − q2a−3.

Therefore, we have that

µ(Lλ) − q2n−1µ(Lλ−1) = q2{µ(Lη) − q2n−1µ(Lη−1)}.

Now, by our induction hypothesis, we have that

q2{µ(Lη) − q2n−1µ(Lη−1)} = −(−q)|η|−1+2(q − 1) = −(−q)|λ|−1(q − 1).
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This finishes the proof of the lemma when λ = (
a︷ ︸︸ ︷

2, . . . , 2,
b︷ ︸︸ ︷

1, . . . , 1), a ≥ 2.

Now, assume that λ = (
n−a−b︷ ︸︸ ︷

3, . . . , 3,
a︷ ︸︸ ︷

2, . . . , 2,
b︷ ︸︸ ︷

1, . . . , 1), and let η = (
n−a−b−1︷ ︸︸ ︷
3, . . . , 3 ,

a︷ ︸︸ ︷
2, . . . , 2,

b+1︷ ︸︸ ︷
1, . . . , 1). Then,

by Proposition 10.10 (1), we have

µ(Lλ) = q2µ(Lη) + q4n−2b−2µ(L(λ≥2)−2) − q4n−2b−2µ(L(η≥2)−2).

Also, by the previous case, we have

µ(Lλ−1) = q2n−2b−1µ(L(λ≥2)−2) − (−q)|λ|−n−1(q − 1),
µ(Lη−1) = q2n−2b−3µ(L(η≥2)−2) − (−q)|η|−n−1(q − 1),
µ(Lλ−1) = q2µ(Lη−1) + q2n−2b−1µ(L(λ≥2)−2) − q2n−2b−1µ(L(η≥2)−2).

Therefore, we have

µ(Lλ) − q2n−1µ(Lλ−1) = q2µ(Lη) + q4n−2b−2µ(L(λ≥2)−2) − q4n−2b−2µ(L(η≥2)−2)

− q2n−1{q2µ(Lη−1) + q2n−2b−1µ(L(λ≥2)−2) − q2n−2b−1µ(L(η≥2)−2)

= q2{µ(Lη) − q2n−1µ(Lη−1)}

= −(−q)|η|+2−1(q − 1) (by our inductive hypothesis)

= −(−q)|λ|−1(q − 1).

This finishes the proof of the lemma when λ = (
n−a−b︷ ︸︸ ︷

3, . . . , 3,
a︷ ︸︸ ︷

2, . . . , 2,
b︷ ︸︸ ︷

1, . . . , 1).

Now, assume that λ = (λ1 = 4, λ2, . . . , λn−a−b,

a︷ ︸︸ ︷
2, . . . , 2,

b︷ ︸︸ ︷
1, . . . , 1), λn−a−b ≥ 3. Let

η = (λ2, . . . , λn−a−b,

a+1︷ ︸︸ ︷
2, . . . , 2,

b︷ ︸︸ ︷
1, . . . , 1).

Then, by Proposition 10.10 (1), we have

µ(Lλ) = q2µ(Lη) + q4n−2b−2µ(L(λ≥2)−2) − q4n−2bµ(L(η≥2)−2).

Similarly, we have t≥2(λ−1) = n−a− b, t≥2(η−1) = n−a− b−1, t≥1(λ−1) = t≥1(η−1) = n− b,
and

µ(Lλ−1) = q2µ(Lη−1) + q4n−2a−4b−2µ(L(λ≥3)−3) − q4n−2a−4b−2µ(L(η≥3)−3).
Therefore,

µ(Lλ) − q2n−1µ(Lλ−1) = q2{µ(Lη) − q2n−1µ(Lη−1)}
+q4n−2b−2{µ(L(λ≥2)−2) − q2n−2a−2b−1µ(L(λ≥3)−3)}
−q4n−2b{µ(L(η≥2)−2) − q2n−2a−2b−3µ(L(η≥3)−3)}

(by our inductive hypothesis) = −(−q)|η|+1(q − 1) + q4n−2b−2(−(−q)|λ|−b−2(n−b)−1(q − 1))
−(−q)4n−2b(−(−q)|η|−b−2(n−b)−1(q − 1))
= −(−q)|λ|−1(q − 1).

This finishes the proof of the lemma when λ = (λ1 = 4, λ2, . . . , λn−a−b,

a︷ ︸︸ ︷
2, . . . , 2,

b︷ ︸︸ ︷
1, . . . , 1), λn−a−b ≥

3.
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Finally, assume that λ = (λ1, . . . , λn−a−b,

a︷ ︸︸ ︷
2, . . . , 2,

b︷ ︸︸ ︷
1, . . . , 1), λ1 ≥ 5. In this case, let η = (λ1 −

2, λ2, . . . , λn) (if necessary, we change the order of ηi’s so that η ∈ R0+
n ). Then, by Proposition

10.10 (1), we have

µ(Lλ) = q2µ(Lη) + q4n−2b−2µ(L(λ≥2)−2) − q4n−2bµ(L(η≥2)−2),

and
µ(Lλ−1) = q2µ(Lη−1) + q4n−2a−4b−2µ(L(λ≥3)−3) − q4n−2a−4bµ(L(η≥3)−3).

Therefore,

µ(Lλ) − q2n−1µ(Lλ−1) = q2{µ(Lη) − q2n−1µ(Lη−1)}
+q4n−2b−2{µ(L(λ≥2)−2) − q2n−2a−2b−1µ(L(λ≥3)−3)}
−q4n−2b{µ(L(η≥2)−2) − q2n−2a−2b−1µ(L(η≥3)−3)}

(by our inductive hypothesis) = −(−q)|η|+1(q − 1) + q4n−2b−2(−(−q)|λ|−b−2(n−b)−1(q − 1))
−(−q)4n−2b(−(−q)|η|−b−2(n−b)−1(q − 1))
= −(−q)|λ|−1(q − 1).

This finishes the proof of the lemma. □

Lemma 10.12. Assume that a ≥ 1, and j ∈ Z. Let κa,i be the constants such that

(1 −X)(1 − (−q)X) . . . (1 − (−q)a−2X) =
a−1∑
i=0

κa,iX
i.

Then, we have

Dn,h(a, b, c) =
a−1∑
i=0

κa,i(−q)i(a+b−h+1)Dn−i,h−i(1, b+ a− 1 − i, c).

Proof. This follows from Theorem 9.4. □

Definition 10.13. Assume that a+ b+ c = n− 1.
(1) We define the function En,h(a, b, c) by

En,h(a, b, c) :=

Dn,h(a+ 1, b, c)
+((−q)a − 1) × Dn,h(a, b+ 1, c)

+(−q)a((−q)a − 1) × Dn,h(a, b, c+ 1)
−(−q)2a(1 − (−q)b)(1 − (−q)b−1) × Dn,h(a+ 1, b− 2, c+ 2)

−(−q)2a+b−1(1 − (−q)b)(1 − (−q)a) × Dn,h(a, b− 1, c+ 2).

(2) We define the function Fn,h(a, b, c) by

Fn,h(a, b, c) :=

Dn,h(a, b+ 1, c)
+((−q)a−1 − 1) × Dn,h(a− 1, b+ 2, c)

−(−q)a−1 × Dn,h(a, b, c+ 1)
+(−q)2a+b−1(1 − (−q)b) × Dn,h(a, b− 1, c+ 2)

+(−q)2a+2b−1(1 − (−q)a−1) × Dn,h(a− 1, b, c+ 2)
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Lemma 10.14. Assume that a ≥ 1. Then, we have

En,h(a, b, c) = 0.

Proof. To simplify notation, we assume that for k ≥ 1,

Xk
0 := Dn−k+1,h−k+1(1, b+ a− k + 1, c),

Xk
1 := Dn−k+1,h−k+1(1, b+ a− k, c+ 1),

Xk
2 := Dn−k+1,h−k+1(1, b+ a− k − 1, c+ 2).

Then, by Lemma 10.12, we have that

Dn,h(a+ 1, b, c) = X0(1 − (−q)a+b−h+2X0) . . . (1 − (−q)2a+b−h+1X0),
Dn,h(a, b+ 1, c) = X0(1 − (−q)a+b−h+2X0) . . . (1 − (−q)2a+b−hX0),
Dn,h(a, b, c+ 1) = X1(1 − (−q)a+b−h+1X1) . . . (1 − (−q)2a+b−h−1X1),
Dn,h(a+ 1, b− 2, c+ 2) = X2(1 − (−q)a+b−hX2) . . . (1 − (−q)2a+b−h−1X2),
Dn,h(a, b− 1, c+ 2) = X2(1 − (−q)a+b−hX2) . . . (1 − (−q)2a+b−h−2X2).

Therefore, we have that

Dn,h(a+ 1, b, c) + ((−q)a − 1)Dn,h(a, b+ 1, c)
= (−q)aX0(1 − (−q)a+b−h+1X0) . . . (1 − (−q)2a+b−hX0)
= (−q)aX0(1 − (−q)2a+b−hX0)(∑a−1

t=0 κa,t(−q)t(a+b−h+1)Xt
0).

This implies that for 1 ≤ t ≤ a+ 1, Xt
0-terms are

(10.6)®
(−q)a{κa,t−1(−q)(a+b−h+1)(t−1) − (−q)2a+b−hκa,t−2(−q)(a+b−h+1)(t−2)}Xt

0 if t ̸= a+ 1,
−(−q)3a+b−hκa,a−1(−q)(a+b−h+1)(a−1)Xa+1

0 if t = a+ 1.

Similarly, for 1 ≤ t ≤ a, Xt
1-terms in (−q)a((−q)a − 1)Dn,h(a, b, c+ 1) are

(10.7) (−q)a((−q)a − 1)κa,t−1(−q)(a+b−h+1)(t−1)Xt
1.

Finally, for 1 ≤ t ≤ a+ 1, Xt
2-terms in

−(−q)2a(1 − (−q)b)(1 − (−q)b−1)Dn,h(a+ 1, b− 2, c+ 2)
−(−q)2a+b−1(1 − (−q)b)(1 − (−q)a)Dn,h(a, b− 1, c+ 2)

are

(10.8)


{−κa,t−1(−q)(a+b−h)(t−1)+2a(1 − (−q)b)(1 − (−q)a+b−1)
+κa,t−2(−q)(a+b−h)(t−2)+4a+b−h−1(1 − (−q)b)(1 − (−q)b−1)}Xt

2 if t ̸= a+ 1,
κa,a−1(−q)(a+b−h)(a−1)+4a+b−h−1(1 − (−q)b)(1 − (−q)b−1)Xa+1

2 if t = a+ 1.

Note that if a+ b < h− 1, then Xt
0, X

t
1, and Xt

2 are all zero. Therefore, all of the degree t-terms
of En,h(a, b, c) are 0, and hence En,h(a, b, c) = 0 in this case.

Now, assume that a+ b ≥ h+ 2. Then, by Theorem 9.8, we have that

(10.9)
Xt

0 = ∏a+b−t+1
l=h−t+2(1 − (−q)l),

Xt
1 = ∏a+b−t

l=h−t+2(1 − (−q)l),
Xt

2 = ∏a+b−t−1
l=h−t+2(1 − (−q)l).

68



Combining (10.6), (10.7), (10.8), and (10.9), we can see that the degree t-terms of En,h(a, b, c)
can be written as follows: if 1 ≤ t ≤ a, we have
(10.10)

a+b−t−1∏
l=h−t+2

(1 − (−q)l)
{

(−q)a{κa,t−1(−q)(a+b−h+1)(t−1) − (−q)2a+b−hκa,t−2(−q)(a+b−h+1)(t−2)}

× (1 − (−q)a+b−t+1)(1 − (−q)a+b−t)

+ (−q)a((−q)a − 1)κa,t−1(−q)(a+b−h+1)(t−1)(1 − (−q)a+b−t)

+ {−κa,t−1(−q)(a+b−h)(t−1)+2a(1 − (−q)b)(1 − (−q)a+b−1)

+ κa,t−2(−q)(a+b−h)(t−2)+4a+b−h−1(1 − (−q)b)(1 − (−q)b−1)}
}

= ((−q)a+2b − (−q)t)(−q)(a+b−h)(t−2)+3a+b−h−t−2

{−((−q)t+1 − (−q)2)κa,t−1 + ((−q)t − (−q)a+1)κa,t−2}.

Now, we claim that

(10.11) {−((−q)t+1 − (−q)2)κa,t−1 + ((−q)t − (−q)a+1)κa,t−2} = 0.

Recall from Lemma 10.12 that
(1 −X)(1 − (−q)X) . . . (1 − (−q)a−2X) = ∑a−1

t=0 κa,tX
t,

(1 − (−q)X)(1 − (−q)2X) . . . (1 − (−q)a−1X) = ∑a−1
t=0 κa,t(−q)tXt.

Therefore,

(1 − (−q)a−1X)
a−1∑
t=0

κa,tX
t = (1 −X)

a−1∑
t=0

κa,t(−q)tXt.

By comparing degree t− 1 terms, we have that

(10.12) κa,t−1 − (−q)a−1κa,t−2 = κa,t−1(−q)t−1 − κa,t−2(−q)t−2

⇐⇒ −((−q)t−1 − 1)κa,t−1 + ((−q)t−2 − (−q)a−1)κa,t−2 = 0.

Therefore, we have that (10.11) holds, and hence (10.10) is zero. This shows that the degree t-term
of En,h(a, b, c) is zero for 1 ≤ t ≤ a.

For t = a+ 1, we have that the degree a+ 1-terms of En,h(a, b, c) are∏b−2
l=h−a+1(1 − (−q)l)

{
− (−q)3a+b−hκa,a−1(−q)(a+b−h+1)(a−1)(1 − (−q)b)(1 − (−q)b−1)

+κa,a−1(−q)(a+b−h)(a−1)+4a+b−h−1(1 − (−q)b)(1 − (−q)b−1)
}

= 0.

This shows that En,h(a, b, c) = 0 holds when a+ b ≥ h+ 2.
Now, the remaining cases are a+ b = h− 1, h, and h+ 1.
When a + b = h − 1, we have that Xt

0 = 1, Xt
1 = Xt

2 = 0 by Theorem 9.8. Therefore, we have
that

Dn,h(a+ 1, b, c) + ((−q)a − 1)Dn,h(a, b+ 1, c)
= (−q)a(1 − (−q)a+b−h+1) . . . (1 − (−q)2a+b−h)
= 0 (since a+ b− h+ 1 = 0).
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Also, we have Dn,h(a, b, c+ 1) = 0, Dn,h(a+ 1, b− 2, c+ 2) = 0, and Dn,h(a, b− 1, c+ 2) = 0. This
shows that En,h(a, b, c) = 0 holds when a+ b = h− 1.

When a + b = h, we have that Xt
0 = Xt

1 = 1 and Xt
2 = 0 by Theorem 9.8. Therefore, we have

that

Dn,h(a+ 1, b, c) + ((−q)a − 1)Dn,h(a, b+ 1, c) = (−q)a(1 − (−q)a+b−h+1) . . . (1 − (−q)2a+b−h);

(−q)a((−q)a − 1)Dn,h(a, b, c+ 1) = (−q)a((−q)a − 1)(1 − (−q)a+b−h+1) . . . (1 − (−q)2a+b−h−1);

−(−q)2a(1 − (−q)b)(1 − (−q)b−1)Dn,h(a+ 1, b− 2, c+ 2) = 0;

−(−q)2a+b−1(1 − (−q)b)(1 − (−q)a)Dn,h(a, b− 1, c+ 2) = 0.

Therefore, En,h(a, b, c) is

(−q)a(1 − (−q)a+b−h+1) . . . (1 − (−q)2a+b−h) + (−q)a((−q)a − 1)(1 − (−q)a+b−h+1) . . . (1 − (−q)2a+b−h−1)
= (−q)a(1 − (−q)a+b−h+1) . . . (1 − (−q)2a+b−h−1){(−q)a − (−q)2a+b−h}
= 0 (since 2a+ b− h = a).

Now, assume that a+b = h+1. In this case, by Theorem 9.8, we have that Xt
0 = (1−(−q)h−t+2),

Xt
1 = 1, and Xt

2 = 1. Therefore, we have

(10.13)

Dn,h(a+ 1, b, c) + ((−q)a − 1)Dn,h(a, b+ 1, c)
= (−q)a(1 − (−q)a+b−h+1) . . . (1 − (−q)2a+b−h)
−(−q)a(−q)h+1(1 − (−q)a+b−h+1(−q)−1) . . . (1 − (−q)2a+b−h(−q)−1)
= (−q)a(1 − (−q)2) . . . (1 − (−q)a)(1 − (−q)a+1 − (−q)h+1 + (−q)h+2).

Also, we have

(−q)a((−q)a − 1)Dn,h(a, b, c+ 1) = (−q)a((−q)a − 1)(1 − (−q)2) . . . (1 − (−q)a),

and
−(−q)2a(1 − (−q)b)(1 − (−q)b−1)Dn,h(a+ 1, b− 2, c+ 2)
−(−q)2a+b−1(1 − (−q)b)(1 − (−q)a)Dn,h(a, b− 1, c+ 2)
= −(−q)2a(1 − (−q)b)(1 − (−q)b−1)(1 − (−q)a+b−h) . . . (1 − (−q)2a+b−h−1)
−(−q)2a+b−1(1 − (−q)b)(1 − (−q)a)(1 − (−q)a+b−h) . . . (1 − (−q)2a+b−h−2)
= −(−q)2a(1 − (−q)b)(1 − (−q)1) . . . (1 − (−q)a).

Therefore, En,h(a, b, c) is

(−q)a(1 − (−q)2) . . . (1 − (−q)a)(1 − (−q)a+1 − (−q)h+1 + (−q)h+2)
+(−q)a((−q)a − 1)(1 − (−q)2) . . . (1 − (−q)a) − (−q)2a(1 − (−q)b)(1 − (−q)1) . . . (1 − (−q)a)
= 0.

Hence, En,h(a, b, c) = 0 holds when a+ b = h+ 1.
This finishes the proof of the lemma. □
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Lemma 10.15. Assume that a = 0. Then, we have

En,h(a, b, c) =


0 if b ≥ h+ 2 or b ≤ h− 2,
1 if b = h− 1, h,

q2h+1 + (−q)h if b = h+ 1.

Proof. Note that when a = 0, we have that En,h(a, b, c) is

Dn,h(1, b, c) − (1 − (−q)b)(1 − (−q)b−1)Dn,h(1, b− 2, c+ 2).

If b ≤ h− 2, then we have that both Dn,h(1, b, c) and Dn,h(1, b− 2, c+ 2) are zero.
If b ≥ h+ 2, then by Theorem 9.8, we have that

Dn,h(1, b, c) − (1 − (−q)b)(1 − (−q)b−1)Dn,h(1, b− 2, c+ 2)
= ∏b

l=h+1(1 − (−q)l) − (1 − (−q)b)(1 − (−q)b−1) ∏b−2
l=h+1(1 − (−q)l) = 0.

Now, assume that b = h+ 1. Then, by Theorem 9.8, we have

Dn,h(1, b, c) − (1 − (−q)b)(1 − (−q)b−1)Dn,h(1, b− 2, c+ 2)
= (1 − (−q)h+1) − (1 − (−q)h+1)(1 − (−q)h) = (−q)h(1 − (−q)h+1) = q2h+1 + (−q)h.

Finally, if b = h, h− 1, then by Theorem 9.8, we have

Dn,h(1, b, c) − (1 − (−q)b)(1 − (−q)b−1)Dn,h(1, b− 2, c+ 2) = 1.

This finishes the proof of the lemma. □

Lemma 10.16. Assume that a ≥ 2. Then, we have

Fn,h(a, b, c) = 0

Proof. To simplify notation, we follow the notation in the proof of Lemma 10.14. Then, by Lemma
10.12, we have

Dn,h(a, b+ 1, c) = X0(1 − (−q)a+b−h+2X0) . . . (1 − (−q)2a+b−hX0),
Dn,h(a− 1, b+ 2, c) = X0(1 − (−q)a+b−h+2X0) . . . (1 − (−q)2a+b−h−1X0),
Dn,h(a, b, c+ 1) = X1(1 − (−q)a+b−h+1X1) . . . (1 − (−q)2a+b−h−1X1),
Dn,h(a, b− 1, c+ 2) = X2(1 − (−q)a+b−hX2) . . . (1 − (−q)2a+b−h−2X2),
Dn,h(a− 1, b, c+ 2) = X2(1 − (−q)a+b−hX2) . . . (1 − (−q)2a+b−h−3X2).

This implies that for 1 ≤ t ≤ a, Xt
0-terms of Dn,h(a, b+ 1, c) + ((−q)a−1 − 1)Dn,h(a− 1, b+ 2, c)

are
(10.14)®

(−q)a−1{κa−1,t−1(−q)(a+b−h+1)(t−1) − (−q)2a+b−h−1κa−1,t−2(−q)(a+b−h+1)(t−2)}Xt
0, if t ̸= a,

−(−q)3a+b−h−2κa−1,a−2(−q)(a+b−h+1)(a−2)Xa
0 if t = a.

Similarly, for 1 ≤ t ≤ a, Xt
1-terms in −(−q)a−1Dn,h(a, b, c+ 1) are

(10.15)®
−(−q)a−1{κa−1,t−1(−q)(a+b−h+1)(t−1) − (−q)2a+b−h−1κa−1,t−2(−q)(a+b−h+1)(t−2)}Xt

1, if t ̸= a,

(−q)3a+b−h−2κa−1,a−2(−q)(a+b−h+1)(a−2)Xa
1 if t = a.
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Finally, for 1 ≤ t ≤ a, Xt
2-terms in (−q)2a+b−1(1 − (−q)b)Dn,h(a, b− 1, c+ 2) + (−q)2a+2b−1(1 −

(−q)a−1)Dn,h(a− 1, b, c+ 2) are

(10.16)


{κa−1,t−1(−q)(a+b−h)(t−1)+2a+b−1(1 − (−q)a+b−1)
−κa−1,t−2(−q)(a+b−h)(t−2)+4a+2b−h−3(1 − (−q)b}Xt

2 if t ̸= a,

−κa−1,a−2(−q)(a+b−h)(a−2)+4a+2b−h−3(1 − (−q)b)Xa
2 if t = a.

First, assume that a + b ≥ h + 2. Then, by (10.9), (10.14), (10.15), and (10.16), we have that
the degree t-terms of Fn,h(a, b, c) are as follows: for 1 ≤ t ≤ a− 1, we have

(10.17)

∏a+b−t−1
l=h−t+2(1 − (−q)l)

×
{

(−q)a−1{κa−1,t−1(−q)(a+b−h+1)(t−1) − (−q)2a+b−h−1κa−1,t−2(−q)(a+b−h+1)(t−2)}
×(1 − (−q)a+b−t+1)(1 − (−q)a+b−t)
−(−q)a−1{κa−1,t−1(−q)(a+b−h+1)(t−1) − (−q)2a+b−h−1κa−1,t−2(−q)(a+b−h+1)(t−2)}
×(1 − (−q)a+b−t)
+{κa−1,t−1(−q)(a+b−h)(t−1)+2a+b−1(1 − (−q)a+b−1)
−κa−1,t−2(−q)(a+b−h)(t−2)+4a+2b−h−3(1 − (−q)b)}

}
= (−q)(a+b−h)(t−1)+3a+2b−t−3

{−((−q)t+1 − (−q)2)κa−1,t−1 + ((−q)t − (−q)a)κa−1,t−2}.

Now, by (10.11), we have that (10.17) is zero.
For t = a, we have that the degree a-terms of Fn,h(a, b, c) are∏b−1

l=h−a+2(1 − (−q)l)
{

− (−q)3a+b−h−2κa−1,a−2(−q)(a+b−h+1)(a−2)(1 − (−q)b+1)(1 − (−q)b)
+(−q)3a+b−h−2κa−1,a−2(−q)(a+b−h+1)(a−2)(1 − (−q)b)
−κa−1,a−2(−q)(a+b−h)(a−2)+4a+2b−h−3(1 − (−q)b)

}
= 0.

This shows that Fn,h(a, b, c) = 0 holds when a+ b ≥ h+ 2.
Now, the remaining cases are a+ b < h− 1, a+ b = h− 1, h, and h+ 1.
If a+ b < h− 1, then Xt

0, X
t
1, and Xt

2 are all zero, and hence Fn,h(a, b, c) = 0 holds.
If a + b = h − 1, we have that Xt

0 = 1, and Xt
1 = Xt

2 = 0 by Theorem 9.8. Therefore, we have
that Fn,h(a, b, c) is

(1 − (−q)a+b−h+2) . . . (1 − (−q)2a+b−h) + ((−q)a−1 − 1)(1 − (−q)a+b−h+2) . . . (1 − (−q)2a+b−h−1)
= 0 ( since 2a+ b− h = a− 1).

This shows that Fn,h(a, b, c) = 0 holds when a+ b = h− 1.
If a + b = h, then we have Xt

0 = Xt
1 = 1 and Xt

2 = 0 by Theorem 9.8. Therefore, we have that
Fn,h(a, b, c) is

(1 − (−q)a+b−h+2) . . . (1 − (−q)2a+b−h) + ((−q)a−1 − 1)(1 − (−q)a+b−h+2) . . . (1 − (−q)2a+b−h−1)
−(−q)a−1(1 − (−q)a+b−h+1) . . . (1 − (−q)2a+b−h−1)
= 0.

This shows that Fn,h(a, b, c) = 0 holds when a+ b = h.
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When a + b = h + 1, we have Xt
0 = (1 − (−q)h−t+2), and Xt

1 = Xt
2 = 1. Therefore, by (10.13),

we have that Fn,h(a, b, c) is

(−q)a−1(1 − (−q)2) . . . (1 − (−q)a−1)(1 − (−q)a − (−q)h+1 + (−q)h+2)
−(−q)a−1(1 − (−q)2) . . . (1 − (−q)a)
+(−q)2a+b−1(1 − (−q)b)(1 − (−q)) . . . (1 − (−q)a−1)
+(−q)2a+2b−1(1 − (−q)a−1)(1 − (−q)) . . . (1 − (−q)a−2)
= 0.

Therefore, Fn,h(a, b, c) = 0 holds when a+b = h+1, and this finishes the proof of the lemma. □

Lemma 10.17. Assume that a = 1. Then, we have

Fn,h(a, b, c) =


0 if b ≥ h+ 1 or b ≤ h− 3,
1 if b = h− 2,
0 if b = h− 1,

q2h+1 if b = h.

Proof. Note that when a = 1, we have that Fn,h(a, b, c) is

Dn,h(1, b+ 1, c) −Dn,h(1, b, c+ 1) + (−q)b+1(1 − (−q)b)Dn,h(1, b− 1, c+ 2).

If b ≤ h− 3, we have that Dn,h(1, b+ 1, c) = Dn,h(1, b, c+ 1) = Dn,h(1, b− 1, c+ 2) = 0.
If b ≥ h+ 1, by Theorem 9.8, we have

Dn,h(1, b+ 1, c) −Dn,h(1, b, c+ 1) + (−q)b+1(1 − (−q)b)Dn,h(1, b− 1, c+ 2)
= ∏b+1

l=h+1(1 − (−q)l) −
∏b

l=h+1(1 − (−q)l) + (−q)b+1(1 − (−q)b) ∏b−1
l=h+1(1 − (−q)l) = 0.

If b = h− 2, then we have

Dn,h(1, b+ 1, c) −Dn,h(1, b, c+ 1) + (−q)b+1(1 − (−q)b)Dn,h(1, b− 1, c+ 2) = 1 − 0 + 0 = 1.

If b = h− 1, then we have

Dn,h(1, b+ 1, c) −Dn,h(1, b, c+ 1) + (−q)b+1(1 − (−q)b)Dn,h(1, b− 1, c+ 2) = 1 − 1 + 0 = 0.

If b = h, then we have

Dn,h(1, b+ 1, c) −Dn,h(1, b, c+ 1) + (−q)b+1(1 − (−q)b)Dn,h(1, b− 1, c+ 2)
= (1 − (−q)h+1) − 1 + (−q)h+1(1 − (−q)h) = q2h+1.

This finishes the proof of the lemma. □

Theorem 10.18. Assume that x ⊥ L♭, val((x, x)) ≤ −2, and L♭ ⊂ L′♭ ⊂ (L′♭)∨ ⊂ L♭
F . Let

λ be the fundamental invariants of L′♭ and (a, b, c) = (t≥2(λ), t1(λ), t0(λ)). Assume further that
(a, b, c) ̸= (1, h, n − h − 2), (1, h − 2, n − h), (0, h + 1, n − h − 2), (0, h, n − h − 1), (0, h − 1, n − h).
Then, we have ’∂Den

n,h

L′♭◦(x) = 0.
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Proof. Recall that by (10.1), we have’∂Den
n,h

L′♭◦(x) =
∑

(u♭,u⊥)∈(L′♭)∨,≥0/L′♭×(⟨x⟩∨\{0})/O×
F

Dn,h(L′♭ + ⟨u♭ + u⊥⟩) vol(L′♭ + ⟨u♭ + u⊥⟩).

Since val((x, x)) ≤ −2, we have that val((u⊥, u⊥)) ≥ 2. Therefore, by Proposition 10.3, Dn,h(L′♭ +
⟨u♭ + u⊥⟩) depends only on u♭. Also, we have that

vol(L′♭ + ⟨u♭ + u⊥⟩) = vol(L′♭) vol(⟨u⊥⟩).

This implies that’∂Den
n,h

L′♭◦(x) =
∑

(u♭,u⊥)∈(L′♭)∨,≥0/L′♭×(⟨x⟩∨\{0})/O×
F

Dn,h(L′♭ + ⟨u♭ + u⊥⟩) vol(L′♭ + ⟨u♭ + u⊥⟩)

= vol(L′♭) vol(⟨x⟩∨)
∑
i≥0
q−2i

∑
u♭∈(L′♭)∨,≥0/L′♭

Dn,h(L′♭ + ⟨u♭ + u⊥⟩)

= vol(L′♭) vol(⟨x⟩∨)(1 − q−2)−1
∑

u♭∈(L′♭)∨,≥0/L′♭

Dn,h(L′♭ + ⟨u♭ + u⊥⟩).

Now, it suffices to show that
∑

u♭∈(L′♭)∨,≥0/L′♭

Dn,h(L′♭ + ⟨u♭ + u⊥⟩) = 0.

We claim that
∑

u♭∈(L′♭)∨,≥0/L′♭

Dn,h(L′♭ + ⟨u♭ +u⊥⟩) is a weighted sum of two functions En,h(a, b, c)

and Fn,h(a, b, c) as defined in Definition 10.13. More precisely, we claim that
(10.18) ∑

u♭∈(L′♭)∨,≥0/L′♭

Dn,h(L′♭ + ⟨u♭ + u⊥⟩)

= µ(L(λ≥2)−2) × En,h(a, b, c) + {q2t≥3(λ)µ(L(λ≥3)−3) − (−q)t≥2(λ)µ(L(λ≥2)−2)} × Fn,h(a, b, c).

Note that if the claim (10.18) holds, the theorem follows from Lemmas 10.14, 10.15, 10.16 and
10.17.

Now we prove the claim. Note that both sides of (10.18) are linear sums of the Cho-Yamauchi
constants Dn,h(a+1, b, c), Dn,h(a, b+1, c), Dn,h(a, b, c+1), Dn,h(a+1, b−2, c+2), Dn,h(a, b−1, c+2),
Dn,h(a − 1, b + 2, c), Dn,h(a − 1, b, c + 2). Therefore, it suffices to show that both sides have the
same coefficients.

First, consider the coefficients of Dn,h(a+ 1, b, c) on both sides. By Proposition 10.7 (Case 1-1),
we have that the coefficient of Dn,h(a + 1, b, c) on the left-hand side of (10.18) is µ(L(λ≥2)−2).
Also, the coefficients of Dn,h(a + 1, b, c) on the right hand side of (10.18) is µ(Lλ≥2−2) (note that
Dn,h(a+ 1, b, c) appears only in En,h(a, b, c)). Therefore, the coefficients of Dn,h(a+ 1, b, c) on both
sides are the same.

For Dn,h(a, b + 1, c), by Proposition 10.7 (Case 1-2), we have that the coefficient of Dn,h(a, b +
1, c) on the left hand side of (10.18) is q2t≥3(λ)µ(L(λ≥3)−3) − µ(L(λ≥2)−2). Now, the coefficient of
Dn,h(a, b+ 1, c) on the right hand side of (10.18) is

µ(L(λ≥2)−2){(−q)t≥2(λ) − 1} + {q2t≥3(λ)µ(L(λ≥3)−3) − (−q)t≥2(λ)µ(L(λ≥2)−2)}
= q2t≥3(λ)µ(L(λ≥3)−3) − µ(L(λ≥2)−2).
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Therefore, the coefficients of Dn,h(a, b+ 1, c) on both sides are the same.
For Dn,h(a, b, c + 1), by Proposition 10.7 (Case 1-3+Case 3-2), we have that the coefficient of

Dn,h(a, b, c+ 1) on the left hand side of (10.18) is q2t≥2(λ)µ(L(λ≥2)−2) − µ(L(λ≥2)−1). On the other
hand, the coefficient of Dn,h(a, b, c+ 1) on the right hand side of (10.18) is

µ(L(λ≥2)−2)(−q)t≥2(λ){(−q)t≥2(λ) − 1} − (−q)t≥2(λ)−1{q2t≥3(λ)µ(L(λ≥3)−3) − (−q)t≥2(λ)µ(L(λ≥2)−2)}.

Therefore, it suffices to show that

µ(L(λ≥2)−1)+(−q)2t≥2(λ)−1µ(L(λ≥2)−2) = (−q)t≥2(λ)µ(L(λ≥2)−2)+(−q)t≥2(λ)+2t≥3(λ)−1µ(L(λ≥3)−3).

By Lemma 10.11, we have that

µ(L(λ≥2)−1) − q2t≥2(λ)−1µ(L(λ≥2)−2) = −(q − 1)(−q)|λ|−t1(λ)−t≥2(λ)−1,

and
(−q)t≥2(λ)µ(L(λ≥2)−2) + (−q)t≥2(λ)+2t≥3(λ)−1µ(L(λ≥3)−3) = (−q)t≥2(λ){−(q − 1)(−q)|λ|−t1(λ)−2t≥2(λ)−1}

= −(q − 1)(−q)|λ|−t1(λ)−t≥2(λ)−1.

This shows that the coefficients of Dn,h(a, b, c+ 1) on both sides are the same.
For Dn,h(a+1, b−2, c+2), by Proposition 10.7 (Case 2-1+Case 4-1), we have that the coefficient

of Dn,h(a + 1, b − 2, c + 2) on the left hand side of (10.18) is q2t≥2(λ)µ(L(λ≥2)−2) × (µ(Lλ=1) − 1).
On the other hand, the coefficient of Dn,h(a+ 1, b− 2, c+ 2) on the right hand side of (10.18) is

−(−q)2t≥2(λ)(1 − (−q)t1(λ))(1 − (−q)t1(λ)−1)µ(L(λ≥2)−2).

Now, by Lemma 10.11, we have that

(10.19) µ(Lλ=1) − 1 = q2t1(λ)−1 − (−q)t1(λ)−1(q − 1) − 1 = −(1 − (−q)t1(λ))(1 − (−q)t1(λ)−1).

This shows that the coefficients of Dn,h(a+ 1, b− 2, c+ 2) on both sides are the same.
For Dn,h(a, b − 1, c + 2), by Proposition 10.7 (Case 2-2+Case 4-2), we have that the coefficient

of Dn,h(a, b− 1, c+ 2) on the left hand side of (10.18) is

q2t≥2(λ){µ(L(λ≥2)−2 k Lλ=1) − µ(L(λ≥2)−2)µ(Lλ=1)}.

On the other hand, the coefficient of Dn,h(a, b− 1, c+ 2) on the right hand side is

−(−q)2t≥2(λ)+t1(λ)−1(1 − (−q)t1(λ))(1 − (−q)t≥2(λ))µ(L(λ≥2)−2)
+(−q)2t≥2(λ)+t1(λ)−1(1 − (−q)t1(λ)){q2t≥3(λ)µ(L(λ≥3)−3) − (−q)t≥2(λ)µ(L(λ≥2)−2)}.

Note that by Lemma 10.11, we have that

µ(L(λ≥2)−2 k Lλ=1) = µ(L(λ≥3)−2 k Lλ=1) = q2t≥3(λ)+2t1(λ)−1µ(L(λ≥3)−3) − (q − 1)(−q)|λ|−2t≥2(λ)−1.

Combining these with (10.19), it suffices to show that

−(q − 1)(−q)|λ|−1 = (−q)2t≥2(λ)+t1(λ)µ(L(λ≥2)−2) + (−q)2t≥3(λ)+2t≥2(λ)+t1(λ)−1µ(L(λ≥3)−3).

Since µ(L(λ≥2)−2) = µ(L(λ≥3)−2), this follows from Lemma 10.11. This shows that the coefficients
of Dn,h(a, b− 1, c+ 2) on both sides are the same.
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For Dn,h(a− 1, b+ 2, c), by Proposition 10.7 (Case 3-1), we have that the coefficient of Dn,h(a−
1, b+ 2, c) on the left hand side of (10.18) is

µ(L(λ≥2)−1) − q2t≥3(λ)µ(L(λ≥3)−3).

On the other hand, the coefficient of Dn,h(a− 1, b+ 2, c) on the right hand side of (10.18) is

((−q)t≥2(λ)−1 − 1){q2t≥3(λ)µ(L(λ≥3)−3) − (−q)t≥2(λ)µ(L(λ≥2)−2)}.

Therefore, it suffices to show that

µ(L(λ≥2)−1)+(−q)2t≥2(λ)−1µ(L(λ≥2)−2) = (−q)t≥2(λ)µ(L(λ≥2)−2)+(−q)2t≥3(λ)+t≥2(λ)−1µ(L(λ≥3)−3).

Now, by Lemma 10.11, we have that

µ(L(λ≥2)−1) + (−q)2t≥2(λ)−1µ(L(λ≥2)−2) = −(−q)|λ|−t1(λ)−t≥2(λ)−1(q − 1),

and

(−q)t≥2(λ)µ(L(λ≥2)−2)+(−q)2t≥3(λ)+t≥2(λ)−1µ(L(λ≥3)−3) = (−q)t≥2(λ)(−(−q)|λ|−t1(λ)−2t≥2(λ)−1)(q−1).

This shows that the coefficients of Dn,h(a− 1, b+ 2, c) on both sides are the same.
For Dn,h(a − 1, b, c + 2), by Proposition 10.7 (Case 5), we have that the coefficient of Dn,h(a −

1, b, c+ 2) on the left hand side of (10.18) is

µ(Lλ≥2 k Lλ=1) − q2t≥2(λ)µ(L(λ≥2)−2 k Lλ=1).

On the other hand, the coefficient of Dn,h(a− 1, b, c+ 2) on the right hand side of (10.18) is

(−q)2t≥2(λ)+2t1(λ)−1(1 − (−q)t≥2(λ)−1){q2t≥3(λ)µ(L(λ≥3)−3) − (−q)t≥2(λ)µ(L(λ≥2)−2)}.

Note that by Lemma 10.11, we have

µ(Lλ≥2 k Lλ=1) = q2t≥2(λ)+2t1(λ)−1µ(L(λ≥2)−1) − (q − 1)(−q)|λ|−1,

and

µ(L(λ≥2)−2 k Lλ=1) = µ(L(λ≥3)−2 k Lλ=1) = q2t≥3(λ)+2t1(λ)−1µ(L(λ≥3)−3) − (q − 1)(−q)|λ|−2t≥2(λ)−1.

Therefore, it suffices to show that

q2t≥2(λ)+2t1(λ)−1µ(L(λ≥2)−1) − q2t≥3(λ)+2t≥2(λ)+2t1(λ)−1µ(L(λ≥3)−3)
= (−q)2t≥2(λ)+2t1(λ)−1(1 − (−q)t≥2(λ)−1){q2t≥3(λ)µ(L(λ≥3)−3) − (−q)t≥2(λ)µ(L(λ≥2)−2)}.

Note that this is equivalent to

µ(L(λ≥2)−1) − q2t≥2(λ)−1µ(L(λ≥2)−2) = (−q)t≥2(λ){µ(L(λ≥2)−2) − q2t≥3(λ)−1µ(L(λ≥3)−3)}

= (−q)t≥2(λ){µ(L(λ≥3)−2) − q2t≥3(λ)−1µ(L(λ≥3)−3)}.

Now, by Lemma 10.11, we have that both sides are equal to −(−q)|λ|−t1(λ)−t≥2(λ)−1(q − 1). This
shows that the coefficients of Dn,h(a− 1, b, c+ 2) on both sides are the same.

This finishes the proof of (10.18). Now, the theorem follows from Lemma 10.14, Lemma 10.16,
Lemma 10.15, and Lemma 10.17.

□
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Theorem 10.19. Assume that x ⊥ L♭, val(⟨x, x⟩) ≤ −2, and L♭ ⊂ L′♭ ⊂ (L′♭)∨ ⊂ L♭
F . Let λ be

the fundamental invariants of L′♭ and (a, b, c) = (t≥2(λ), t1(λ), t0(λ)). Then, we have

’∂Den
n,h

L′♭◦(x) =



qh−1(q + 1) vol(⟨x⟩∨)(1 − q−2)−1 if (a, b, c) = (1, h, n− h− 2),
q−h(q + 1) vol(⟨x⟩∨)(1 − q−2)−1 if (a, b, c) = (1, h− 2, n− h),
q−(h−1) vol(⟨x⟩∨)(1 − q−2)−1 if (a, b, c) = (0, h− 1, n− h),
q−h vol(⟨x⟩∨)(1 − q−2)−1 if (a, b, c) = (0, h, n− h− 1),
q−(h+1)(q2h+1 + (−q)h) vol(⟨x⟩∨)(1 − q−2)−1 if (a, b, c) = (0, h+ 1, n− h− 2).

Proof. In the proof of Theorem 10.18, we proved that’∂Den
n,h

L′♭◦(x) = vol(L′♭) vol(⟨x⟩∨)(1 − q−2)−1
∑

u♭∈(L′♭)∨,≥0/L′♭

Dn,h(L′♭ + ⟨u♭ + u⊥⟩).

Also, in (10.18), we showed that∑
u♭∈(L′♭)∨,≥0/L′♭

Dn,h(L′♭ + ⟨u♭ + u⊥⟩)

= µ(L(λ≥2)−2) × En,h(a, b, c) + {q2t≥3(λ)µ(L(λ≥3)−3) − (−q)t≥2(λ)µ(L(λ≥2)−2)} × Fn,h(a, b, c).

First, assume that (a, b, c) = (1, h, n − h − 2), λ = (α,
h︷ ︸︸ ︷

1, . . . , 1,
n−h−2︷ ︸︸ ︷

0, . . . , 0). In this case, we know
that En,h(a, b, c) = 0. Also, it is easy to see that µ(Lα) = q2[ α

2 ], and hence

q2t≥3(λ)µ(L(λ≥3)−3) − (−q)t≥2(λ)µ(L(λ≥2)−2) = q2t≥3(α)µ(Lα−3) + qµ(Lα−2)

=
®

1 + q if α = 2,
q2+2[ α−3

2 ] + q2[ α−2
2 ]+1 = qα−2(q + 1) if α ≥ 3,

= qα−2(q + 1).
Now, by Lemma 10.17, we have that∑

u♭∈(L′♭)∨,≥0/L′♭

Dn,h(L′♭ + ⟨u♭ + u⊥⟩) = qα−2(q + 1)q2h+1.

Similarly, for (a, b, c) = (1, h− 2, n− h), λ = (α,
h−2︷ ︸︸ ︷

1, . . . , 1,
n−h︷ ︸︸ ︷

0, . . . , 0), we have that∑
u♭∈(L′♭)∨,≥0/L′♭

Dn,h(L′♭ + ⟨u♭ + u⊥⟩) = qα−2(q + 1).

Therefore, we have that’∂Den
n,h

L′♭◦(x) = vol(L′♭) vol(⟨x⟩∨)(1 − q−2)−1
∑

u♭∈(L′♭)∨,≥0/L′♭

Dn,h(L′♭ + ⟨u♭ + u⊥⟩)

=
®
qh−1(q + 1) vol(⟨x⟩∨)(1 − q−2)−1 if (a, b, c) = (1, h, n− h− 2),
q−h(q + 1) vol(⟨x⟩∨)(1 − q−2)−1 if (a, b, c) = (1, h− 2, n− h).

Now, assume that a = 0. Then, we have that

µ(L(λ≥2)−2) = 1,
q2t≥3(λ)(L(λ≥3)−3) − (−q)t≥2(λ)µ(L(λ≥2)−2) = 0.
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Therefore, by Lemma 10.15, we have∑
u♭∈(L′♭)∨,≥0/L′♭

Dn,h(L′♭ + ⟨u♭ + u⊥⟩) =
®

1 if b = h− 1, h,
q2h+1 + (−q)h if b = h+ 1.

This implies that’∂Den
n,h

L′♭◦(x) = vol(L′♭) vol(⟨x⟩∨)(1 − q−2)−1
∑

u♭∈(L′♭)∨,≥0/L′♭

Dn,h(L′♭ + ⟨u♭ + u⊥⟩)

=


q−(h−1) vol(⟨x⟩∨)(1 − q−2)−1 if (a, b, c) = (0, h− 1, n− h),
q−h vol(⟨x⟩∨)(1 − q−2)−1 if (a, b, c) = (0, h, n− h− 1),
q−(h+1)(q2h+1 + (−q)h) vol(⟨x⟩∨)(1 − q−2)−1 if (a, b, c) = (0, h+ 1, n− h− 2).

This finishes the proof of the theorem.
□

Theorem 10.20. Assume that x ⊥ L♭, val((x, x)) = −1, and L♭ ⊂ L′♭ ⊂ (L′♭)∨ ⊂ L♭
F . Let

λ be the fundamental invariants of L′♭ and (a, b, c) = (t≥2(λ), t1(λ), t0(λ)). Assume further that
(a, b, c) ̸= (1, h, n − h − 2), (1, h − 2, n − h), (0, h + 1, n − h − 2), (0, h, n − h − 1), (0, h − 1, n − h).
Then, we have ’∂Den

n,h

L′♭◦(x) = − 1
qh
Dn−1,h−1(a, b, c).

Proof. Recall that’∂Den
n,h

L′♭◦(x) =
∑

(u♭,u⊥)∈(L′♭)∨,≥0/L′♭×(⟨x⟩∨\{0})/O×
F

Dn,h(L′♭ + ⟨u♭ + u⊥⟩) vol(L′♭ + ⟨u♭ + u⊥⟩).

Since val((x, x)) = −1, we have that val((u⊥, u⊥)) ≥ 1. In the proof of Theorem 10.18, we proved
that ∑

(u♭,u⊥)∈(L′♭)∨,≥0/L′♭×(⟨x⟩∨\{0})/O×
F ,val((u⊥,u⊥))≥2

Dn,h(L′♭ + ⟨u♭ + u⊥⟩) vol(L′♭ + ⟨u♭ + u⊥⟩) = 0.

Therefore, we have that’∂Den
n,h

L′♭◦(x) =
∑

(u♭,u⊥)∈(L′♭)∨,≥0/L′♭×(⟨x⟩∨\{0})/O×
F ,

val((u⊥,u⊥)=1

Dn,h(L′♭ + ⟨u♭ + u⊥⟩) vol(L′♭ + ⟨u♭ + u⊥⟩).

Then by Proposition 10.4, Dn,h(L′♭ + ⟨u♭ + u⊥⟩) depends only on u♭. Also, we have that

vol(L′♭ + ⟨u♭ + u⊥⟩) = vol(L′♭) vol(⟨u⊥⟩).

This implies that’∂Den
n,h

L′♭◦(x) =
∑

(u♭,u⊥)∈(L′♭)∨,≥0/L′♭×(⟨x⟩∨\{0})/O×
F ,

val((u⊥,u⊥))=1

Dn,h(L′♭ + ⟨u♭ + u⊥⟩) vol(L′♭ + ⟨u♭ + u⊥⟩)

= vol(L′♭)(q)−1
∑

u♭∈(L′♭)∨,≥0/L′♭

Dn,h(L′♭ + ⟨u♭ + u⊥⟩).
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Note that Proposition 10.3 and Proposition 10.4 are different only when (Case 1-1) and (Case
1-2). Also, it is easy to see that

(Case 1-2-1)
|{u♭ ∈ (π2(L′♭

2 )∨ k π(L′♭
1 )∨)≥1 − (π2(L′♭

2 )∨ k π(L′♭
1 )∨)≥2 | val((u♭ + u⊥, u♭ + u⊥)) = 1}|

= q − 2
q − 1(Case 1-2) = q − 2

q − 1(q2t≥3(λ)µ(L(λ≥3)−3) − µ(L(λ≥2)−2)),

(Case 1-2-2)
|{u♭ ∈ (π2(L′♭

2 )∨ k π(L′♭
1 )∨)≥1 − (π2(L′♭

2 )∨ k π(L′♭
1 )∨)≥2 | val((u♭ + u⊥, u♭ + u⊥)) ≥ 2}|

= 1
q − 1(Case 1-2) = 1

q − 1(q2t≥3(λ)µ(L(λ≥3)−3) − µ(L(λ≥2)−2)).

Now, note that if val((u⊥, u⊥)) ≥ 2, then
∑

u♭∈(L′♭)∨,≥0/L′♭

Dn,h(L′♭ + ⟨u♭ +u⊥⟩) = 0. Therefore, for

val((u⊥, u⊥)) = 1, we have’∂Den
n,h

L′♭◦(x) = 1
q

vol(L′♭)
∑

u♭∈(L′♭)∨,≥0/L′♭

Dn,h(L′♭ + ⟨u♭ + u⊥⟩)

= 1
q

vol(L′♭){(Dn,h(a, b+ 1, c) −Dn,h(a+ 1, b, c))µ(L(λ≥2)−2)

+(Dn,h(a+ 1, b, c) −Dn,h(a, b+ 1, c)) 1
q − 1(q2t≥3(λ)µ(L(λ≥3)−3) − µ(L(λ≥2)−2))}

= 1
q

vol(L′♭)(Dn,h(a+ 1, b, c) −Dn,h(a, b+ 1, c)){q
2t≥3(λ)

q − 1 µ(L(λ≥3)−3) − q

q − 1µ(L(λ≥2)−2)}.

By Lemma 10.11, we have

q2t≥3(λ)

q − 1 µ(L(λ≥3)−3) − q

q − 1µ(L(λ≥2)−2) = −(−q)|λ|−b−2a.

Also, by Theorem 9.4, we have

Dn,h(a+ 1, b, c) −Dn,h(a, b+ 1, c) = −(−q)2n−h−1−b−2cDn−1,h−1(a, b, c).

Finally, we have that vol(L′♭) = q−|λ|. Therefore, we have’∂Den
n,h

L′♭◦(x) = (−q)|λ|+2n−2a−2b−2c−h−1

q|λ|+1 Dn−1,h−1(a, b, c).

Now, note that a+ b+ c = n− 1 and val(L′♭ k ⟨x⟩) = |λ| − 1 ≡ h+ 1 (mod 2). This implies that’∂Den
n,h

L′♭◦(x) = − 1
qh
Dn−1,h−1(a, b, c).

This finishes the proof of the theorem. □

Theorem 10.21. Assume that x ⊥ L♭, val((x, x)) = −1, and L♭ ⊂ L′♭ ⊂ (L′♭)∨ ⊂ L♭
F . Let λ be

the fundamental invariants of L′♭ and (a, b, c) = (t≥2(λ), t1(λ), t0(λ)). Then, we have’∂Den
n,h

L′♭◦(x)

=


qh−2(q + 1)(1 − q−2)−1 − q−hDn−1,h−1(a, b, c) if (a, b, c) = (1, h, n− h− 2),
q−h−1(q + 1)(1 − q−2)−1 − q−hDn−1,h−1(a, b, c) if (a, b, c) = (1, h− 2, n− h),
q−h−1(1 − q−2)−1 − q−hDn−1,h−1(a, b, c) if (a, b, c) = (0, h, n− h− 1).
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Note that two cases (a, b, c) = (0, h−1, n−h), (0, h+1, n−h−2) are not possible since val((x, x)) =
−1 and hence val(L♭) ≡ h (mod 2).

Proof. Recall that

(10.20)

’∂Den
n,h

L′♭◦(x) =
∑

(u♭,u⊥)∈(L′♭)∨,≥0/L′♭×(⟨x⟩∨\{0})/O×
F

Dn,h(L′♭ + ⟨u♭ + u⊥⟩) vol(L′♭ + ⟨u♭ + u⊥⟩)

= vol(L′♭)
∑

(u♭,u⊥)∈(L′♭)∨,≥0/L′♭×(⟨x⟩∨\{0})/O×
F

val((u⊥,u⊥)=1

Dn,h(L′♭ + ⟨u♭ + u⊥⟩) vol(⟨u⊥⟩)

+ vol(L′♭)
∑

(u♭,u⊥)∈(L′♭)∨,≥0/L′♭×(⟨x⟩∨\{0})/O×
F

val((u⊥,u⊥)≥3

Dn,h(L′♭ + ⟨u♭ + u⊥⟩) vol(⟨u⊥⟩).

In the proof of the Theorem 10.19, we showed that

vol(L′♭)
∑

(u♭,u⊥)∈(L′♭)∨,≥0/L′♭×(⟨x⟩∨\{0})/O×
F

val((u⊥,u⊥)≥3

Dn,h(L′♭ + ⟨u♭ + u⊥⟩) vol(⟨u⊥⟩)

= vol(L′♭) 1
q3 (1 − q−2)−1

∑
u♭∈(L′♭)∨,≥0/L′♭

val((u⊥,u⊥)≥3

Dn,h(L′♭ + ⟨u♭ + u⊥⟩).

Also, we already computed the sum
∑

u♭∈(L′♭)∨,≥0/L′♭

val((u⊥,u⊥)≥3

Dn,h(L′♭ + ⟨u♭ +u⊥⟩) in the proof of the Theorem

10.19 (more precisely, we computed this for val((u⊥, u⊥)) ≥ 2). Therefore, we only need to compute

vol(L′♭)
∑

(u♭,u⊥)∈(L′♭)∨,≥0/L′♭×(⟨x⟩∨\{0})/O×
F

val((u⊥,u⊥)=1

Dn,h(L′♭ + ⟨u♭ + u⊥⟩) vol(⟨u⊥⟩).

Note that Proposition 10.3 and Proposition 10.4 are different only when (Case 1-1) and (Case
1-2). Therefore, as in the proof of Theorem 10.20, we have that

∑
u♭∈(L′♭)∨,≥0/L′♭

val((u⊥,u⊥)=1

Dn,h(L′♭ + ⟨u♭ + u⊥⟩) −
∑

u♭∈(L′♭)∨,≥0/L′♭

val((u⊥,u⊥)≥2

Dn,h(L′♭ + ⟨u♭ + u⊥⟩)

= (Dn,h(a+ 1, b, c) −Dn,h(a, b+ 1, c)){q
2t≥3(λ)

q − 1 µ(L(λ≥3)−3) − q

q − 1µ(L(λ≥2)−2)}

= (−(−q)2n−h−1−b−2cDn−1,h−1(a, b, c))(−(−q)|λ|−b−2a)
= (−q)|λ|−h+1Dn−1,h−1(a, b, c).
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Since vol(L′♭) = q−|λ| and val(L′♭ k ⟨x⟩) = |λ| − 1 ≡ h+ 1 (mod 2), we have that

vol(L′♭)
∑

(u♭,u⊥)∈(L′♭)∨,≥0/L′♭×(⟨x⟩∨\{0})/O×
F

val(⟨u⊥,u⊥⟩=1

Dn,h(L′♭ + ⟨u♭ + u⊥⟩) vol(⟨u⊥⟩)

= (−q)|λ|−h+1

q|λ|+1 Dn−1,h−1(a, b, c) + vol(L′♭)
q

∑
u♭∈(L′♭)∨,≥0/L′♭

val((u⊥,u⊥)≥2

Dn,h(L′♭ + ⟨u♭ + u⊥⟩)

= − 1
qh
Dn−1,h−1(a, b, c) + vol(L′♭)

q

∑
u♭∈(L′♭)∨,≥0/L′♭

val((u⊥,u⊥)≥2

Dn,h(L′♭ + ⟨u♭ + u⊥⟩).

Now, the theorem follows from (10.20) and the fact that (see the proof of Theorem 10.19)

∑
u♭∈(L′♭)∨,≥0/L′♭

val((u⊥,u⊥)≥2

Dn,h(L′♭ + ⟨u♭ + u⊥⟩) =


qh−1(q + 1)q|λ| if (a, b, c) = (1, h, n− h− 2),
q−h(q + 1)q|λ| if (a, b, c) = (1, h− 2, n− h− 1),
1 if (a, b, c) = (0, h, n− h).

□

We will use the following lemma in the next section when we count the number of horizontal
components. Recall that for λ ∈ R0+

n , we define Aλ by Diag(πλ1 , . . . , πλn).

Lemma 10.22. Assume that λ ≥ 2. Consider (λ, 0n−1), (λ, 2n−1) ∈ R0+
n and (0n−1), (2n−1) ∈

R0+
n−1. Then, we have

Den(A(λ,0n−1), A(λ,2n−1))/Den(A(λ,0n−1), A(λ,0n−1))
Den(A(0n−1), A(2n−1))/Den(A(0n−1), A(0n−1))

=

 q2n−2 if λ ≥ 3,

q2n−2 1 − (−q)−n

1 − (−q)−1 if λ = 2.

Proof. We use [Cho22a, Theorem 2.5] to prove this. To simplify notation, we use the following
convention: For 1 ≤ k ≤ n, B1 ∈ Xn(OF ), and B2 ∈ Xn−1(OF ), we define

Rk
0 = Den(A(λ,1k−1,0n−k), B1), Rk

1 = Den(A(λ,2k−1,1n−k), B1), Rk
2 = Den(A(λ,3k−1,2n−k), B1),

Rk
3 = Den(A(1k−1,0n−k), B2), Rk

4 = Den(A(2k−1,1n−k), B2), Rk
5 = Den(A(3k−1,2n−k), B2),

and for a polynomial f(X) = ∑n
i=1 aiX

i, we denote by f(Ri) the sum f(Ri) := ∑n
i=1 aiR

k
i .

For example, if f(X) = X + X2, then f(R1) = Den(A(λ,0n−1), B1) + Den(A(λ,11,0n−2), B1) (not
Den(A(λ,0n−1), B1) + {Den(A(λ,0n−1), B1)}2).

Also, we define the following polynomials

f1,k(X) = Xk ∏n
l=k+1(1 − (−q)−lX), f2,k(X) = X

∏n
l=k+1(1 − (−q)−lX),

f3,k(X) = Xk ∏n−1
l=k (1 − (−q)−lX), f4,k(X) = X

∏n−1
l=k (1 − (−q)−lX).

Finally, for 0 ≤ j ≤ i, we define the following constants ki,j :
i∏

l=1
(1 + (−q)−lX) =

i∑
j=0

ki,jX
j .

81



First, we claim that

(10.21) f2,i+1(X) =
i∑

j=0
ki,j(−q)− j(j+1)

2 f1,j+1(X), 0 ≤ i ≤ n− 1,

and

(10.22) f4,i+1(X) =
i∑

j=0
ki,j(−q)− j(j−1)

2 f3,j+1(X), 0 ≤ i ≤ n− 1.

Let us prove (10.21) by induction on i. For i = 0, the claim holds since f2,1(X) = f1,1(X). Now,
assume that the claim holds for i, i.e.,

(10.23) X
n∏

l=i+2
(1 − (−q)−lX) =

i∑
j=0

ki,j(−q)− j(j+1)
2 Xj+1

n∏
l=j+2

(1 − (−q)−lX).

Note that ∑i+1
j=0 ki+1,jX

j = ∏i+1
l=1(1 + (−q)−lX) = (1 + (−q)−i−1X)(∑i

j=0 ki,jX
j), and hence

(10.24)

i+1∑
j=0

ki+1,j(−q)− j(j+1)
2 f1,j+1(X) =

i∑
j=0

ki,j(−q)− j(j+1)
2 f1,j+1(X)

+
i∑

j=0
(−q)−i−1ki,j(−q)− (j+1)(j+2)

2 f1,j+2(X).

Now, consider the equation (10.23) with X ⇒ (−q)−1X, n ⇒ n− 1. Then, we have

(−q)−1X
∏n

l=i+3(1 − (−q)−lX) = ∑i
j=0 ki,j(−q)− (j+1)(j+2)

2 Xj+1 ∏n
l=j+3(1 − (−q)−lX)

⇐⇒
∑i

j=0(−q)−i−1ki,j(−q)− (j+1)(j+2)
2 f1,j+2(X) = (−q)−i−2X2 ∏n

l=i+3(1 − (−q)−lX).

Combining this with (10.24), we have
i+1∑
j=0

ki+1,j(−q)− j(j+1)
2 f1,j+1(X) = X

n∏
l=i+2

(1 − (−q)−lX) + (−q)−i−2X2
n∏

l=i+3
(1 − (−q)−lX)

= X
n∏

l=i+3
(1 − (−q)−lX).

This finishes the proof of (10.21). The equation (10.22) can be proved in a similar way.
Now, note that [Cho22a, Theorem 2.5] implies that if B1 = Aη1 , B2 = Aη2 such that η1 ≥

(
n︷ ︸︸ ︷

2, . . . , 2), η2 ≥ (
n−1︷ ︸︸ ︷

2, . . . , 2), then we have

(10.25)
f1,j(R0) = (−1)n−j

(−q)n(n−j) f2,j(R1), f1,j(R1) = (−1)n−j

(−q)n(n−j) f2,j(R2),

f3,j(R3) = (−1)n−j

(−q)(n−1)(n−j) f4,j(R4), f3,j(R4) = (−1)n−j

(−q)(n−1)(n−j) f4,j(R5).

Furthermore, if B1 = A(λ,2n−1) and B2 = A(2n−1), then Rk
2 = Rk

5 = 0 for all k > 1. Therefore,

(10.26) f2,j(R2) = R2 = Den(A(λ,2n−1), A(λ,2n−1)), f4,j(R5) = R5 = Den(A(2n−1), A(2n−1)).
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Since Den(A(λ,1,0n−2), A(λ,2n−1)) = 0, we have
(10.27)
Den(A(λ,0n−1), A(λ,2n−1)) = R0(1 − (−q)−nR0) = f2,n−1(R0)
= ∑n−2

i=0 kn−2,i(−q)− i(i+1)
2 f1,i+1(R0) (by (10.21))

= ∑n−2
i=0 kn−2,i(−q)− i(i+1)

2
(−1)n−i−1

(−q)n(n−i−1) f2,i+1(R1) (by (10.25))

= ∑n−2
i=0 kn−2,i(−q)− i(i+1)

2
(−1)n−i−1

(−q)n(n−i−1)
∑i

j=0 ki,j(−q)− j(j+1)
2 f1,j+1(R1) (by (10.21))

= {
∑n−2

i=0 kn−2,i(−q)− i(i+1)
2

(−1)n−i−1

(−q)n(n−i−1)
∑i

j=0 ki,j(−q)− j(j+1)
2

(−1)n−j−1

(−q)n(n−j−1) }R2 (by (10.25), (10.26)).

Similarly, note that Den(A(1,0n−2), A(2n−1)) = 0, and hence
(10.28)
Den(A(0n−1), A(2n−1)) = R3(1 − (−q)−(n−1)R3) = f4,n−1(R3)
= ∑n−2

i=0 kn−2,i(−q)− i(i−1)
2 f3,i+1(R3) (by (10.22))

= ∑n−2
i=0 kn−2,i(−q)− i(i−1)

2
(−1)n−i−1

(−q)(n−1)(n−i−1) f4,i+1(R4) (by (10.25))

= ∑n−2
i=0 kn−2,i(−q)− i(i−1)

2
(−1)n−i−1

(−q)(n−1)(n−i−1)
∑i

j=0 ki,j(−q)− j(j−1)
2 f3,j+1(R4) (by (10.22))

= {
∑n−2

i=0 kn−2,i(−q)− i(i−1)
2

(−1)n−i−1

(−q)(n−1)(n−i−1)
∑i

j=0 ki,j(−q)− j(j−1)
2

(−1)n−j−1

(−q)(n−1)(n−j−1) }R5 (by (10.25), (10.26)).

Comparing (10.27) and (10.28), we have

(10.29) (−q)2n−2 Den(A(λ,0n−1), A(λ,2n−1))
Den(A(λ,2n−1), A(λ,2n−1))

=
Den(A(0n−1), A(2n−1))
Den(A(2n−1), A(2n−1))

.

Now, by [Cho23, Lemma 4.6], we have

Den(A(2n−1), A(2n−1)) = q2(n−1)2Den(A(0n−1), A(0n−1)) = q2(n−1)2 ∏n−1
l=1 (1 − (−q)−l),

Den(Aλ,(0n−1), A(λ,0n−1)) = qλ(1 − (−q)−1) ∏n−1
l=1 (1 − (−q)−l), if λ ≥ 1,

Den(A(λ,2n−1), A(λ,2n−1)) =
®
q2(n2−1)+λ(1 − (−q)−1) ∏n−1

l=1 (1 − (−q)−l) if λ ≥ 3,
q2n2 ∏n

l=1(1 − (−q)−l) if λ = 2.
Combining these with (10.29), we have

Den(A(λ,0n−1), A(λ,2n−1))/Den(A(λ,0n−1), A(λ,0n−1))
Den(A(0n−1), A(2n−1))/Den(A(0n−1), A(0n−1))

= (−q)−2n+2 Den(A(λ,2n−1), A(λ,2n−1))
Den(A(λ,0n−1), A(λ,0n−1))

Den(A(0n−1), A(0n−1))
Den(A(2n−1), A(2n−1))

=

 q2n−2 if λ ≥ 3,

q2n−2 1 − (−q)−n

1 − (−q)−1 if λ = 2.

This finishes the proof of the lemma. □

11. Tate conjectures and the proof of the main theorem

11.1. The proof of the main theorem. Consider the Rapoport–Zink space N [h]
n and the space

of special homomorphisms V. Assume that L♭ ⊂ V is an OF -lattice of rank n− 1. Recall that for
L′♭ such that L♭ ⊂ L′♭ ⊂ (L′♭)∨ ⊂ L♭

F , we define the primitive part Z(L′♭)◦ of Z(L′♭) inductively
by setting

Z(L′♭)◦ := Z(L′♭) −
∑

L′♭⊂L′′♭

L′′♭⊂(L′′♭)∨⊂L′♭
F

Z(L′′♭)◦.
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For example, for a lattice L′♭ with fundamental invariants (0, 0, . . . , 0, 1), there is no integral lattice
L′′♭ such that L′♭ ⊂ L′′♭ and hence Z(L′♭)◦ = Z(L′♭). For a lattice L′♭ with fundamental invariants
(0, 0, . . . , 0, 3), there is one integral lattice L′′♭ satisfying the above conditions, and its fundamental
invariants are (0, 0, . . . , 0, 1). Therefore, we have Z(L′♭)◦ = Z(L′♭) − Z(L′′♭)◦ = Z(L′♭) − Z(L′′♭).

Now, let us define the derived special cycles LZ(L).

Definition 11.1. For a lattice L ⊂ V, choose its basis x1, . . . , xr. We define the derived special
cycle LZ(L) as the image of OZ(x1) ⊗L · · · ⊗L OZ(xr) in the r-th graded piece of the Grothendieck
group GrrK

Z(L)
0 (N ). This does not depend on the choice of the basis by Proposition 2.12.

By an induction on val(L), Conjecture 7.7 is equivalent to the following statement: for x ∈ V\L♭
F ,

(11.1) χ(N [h]
n , LZ(L′♭)◦ ⊗L OZ(x)) = ∂Denn,h

L′♭◦(x) :=
∑

L′♭⊂L′⊂L′∨,L′∩L♭
F =L′♭

Dn,h(L′)1L′(x),

where L′ ⊂ V are OF -lattices of rank n. For example, for a lattice L′♭ with fundamental invari-
ants (0, . . . , 0, 1), it is obvious that Conjecture 7.7 is equivalent to (11.1). For a lattice L′♭ with
fundamental invariants (0, . . . , 0, 3), there is one integral lattice L′′♭ such that L′♭ ⊊ L′′♭, and the
fundamental invariants of L′′♭ is (0, . . . , 0, 1). Therefore, Conjecture 7.7 is equivalent to

χ(N [h]
n , LZ(L′♭)◦ ⊗L OZ(x)) =

∑
L′♭⊂L′⊂L′∨

Dn,h(L′)1L′(x) −
∑

L′♭⊂L′⊂L′∨,L′∩L♭
F =L′′♭

Dn,h(L′)1L′(x)

=
∑

L′♭⊂L′⊂L′∨,L′∩L♭
F =L′♭

Dn,h(L′)1L′(x),

which is equivalent to (11.1).
Now, note that there is a decomposition of the derived special cycle LZ(L♭) into a sum of

horizontal and vertical parts (see Section 2.3):
LZ(L′♭) = LZ(L′♭)H + LZ(L′♭)V .

We denote by LZ(L′♭)◦
H (resp. LZ(L′♭)◦

V ) the primitive part of LZ(L′♭)H (resp. LZ(L′♭)V ).
We define

IntL′♭,H (x) := χ(N [h]
n , LZ(L′♭)H ⊗L OZ(x)), IntL′♭,V (x) := χ(N [h]

n , LZ(L′♭)V ⊗L OZ(x)),
IntL′♭◦,H (x) := χ(N [h]

n , LZ(L′♭)◦
H ⊗L OZ(x)), IntL′♭◦,V (x) := χ(N [h]

n , LZ(L′♭)◦
V ⊗L OZ(x)).

Then, Conjecture 7.6 is equivalent to

(11.2) IntL′♭,H (x) + IntL′♭,V (x) = ∂Denn,h
L′♭ (x).

or

(11.3) IntL′♭◦,H (x) + IntL′♭◦,V (x) = ∂Denn,h
L′♭◦(x).

Now, we define ∂Denn,h
L′♭◦,V

(x) by

∂Denn,h
L′♭◦,V

(x) := ∂Denn,h
L′♭◦(x) − IntL′♭◦,H (x).

The reason we define the vertical part in this way is that it cannot be separated solely by the
invariants of L′♭. For example, even for a certain lattice L′♭ ∈ H(V), LZ(L′♭)◦ consists of both
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vertical and horizontal parts. Therefore, the corresponding analytic part should include both parts
as well.

Let λ ∈ R0+
n−1 be the fundamental invariants of L′♭. Then, by Lemma 5.6, we know that if

L′♭ /∈ H(V) (i.e., (t≥2(λ), t1(λ), t0(λ)) ̸= (1, h, n− h− 2), (1, h− 2, n− h), (0, h− 1, n− h), (0, h, n−
h− 1), (0, h+ 1, n− h− 2)), then we have

IntL′♭◦,H (x) = 0,

and hence we have that
∂Denn,h

L′♭◦,V
(x) = ∂Denn,h

L′♭◦(x),

in this case.
When L′♭ ∈ H(V), then the horizontal part of Z(L′♭) is not empty, and hence we need to be

careful. Note that by Theorem 5.3, the horizontal part of Z(L′♭)◦ comes from N [0]
2 or N [2]

2 . By
[KR11, Theorem 1.1] and reductions in Proposition 2.7, we have a precise formula for IntL′♭◦,H (x).

Now, we will prove the following theorem.

Theorem 11.2. (cf. [LZ22a, Theorem 7.4.1]) Assume that x ⊥ L′♭ and (t≥2(λ), t1(λ), t0(λ)) =
(a, b, c) where λ ∈ R0+

n−1 is the fundamental invariants of L′♭. Then, we have the followings.

(1) If val((x, x)) ≤ −2, we have ’∂Den
n,h

L′♭◦,V (x) = 0.
(2) If val((x, x)) = −1, we have

’∂Den
n,h

L′♭◦,V (x) =


− 1
qh
Dn−1,h−1(a, b, c) if (a, b, c) ̸= (1, h− 2, n− h),

− 1
qh
Dn−1,h−1(a, b, c) + 1

qh
if (a, b, c) = (1, h− 2, n− h).

Proof. First, if (a, b, c) := (t≥2(λ), t1(λ), t0(λ)) ̸= (1, h, n − h − 2), (1, h − 2, n − h), (0, h − 1, n −
h), (0, h, n−h− 1), (0, h+ 1, n−h− 2), then the assertion (1) follows from Theorem 10.18, and the
assertion (2) follows from Theorem 10.20.

Now, assume that (a, b, c) = (1, h, n − h − 2), (1, h − 2, n − h), (0, h − 1, n − h), (0, h, n − h −
1), (0, h + 1, n − h − 2). Since we already know the Fourier transform of ∂Denn,h

L′♭◦(x) by Theorem
10.19 and Theorem 10.21, we only need to know the Fourier transform of IntL′♭◦,H (x).

When (a, b, c) = (1, h, n− h− 2), let us write L′♭ = L2 kL1 kL0, where the hermitian matrix of
L2, L1, L0 are πλ (λ ≥ 2), πIh, In−h−2, respectively. Then, by Proposition 2.7, Z(L′♭)◦

H in N [h]
n

can be reduced to Z(L2 k L1)◦
H in N

[h]
h+2. Therefore, by Theorem 5.3, we have

(11.4) Z(L2 k L1)◦
H =

∑
L2kL1⊂L2⊕N⊂π−1(L2kL1)

N≃(π−1)h

Z(L2)◦ · Y(N)◦.

By Proposition 2.7 again, Z(L2 k L1)◦
H can be reduced to Z(L2)◦

H = Z(L2)◦ in N [0]
2 . Now,

note that by [KR11, Theorem 1.1], we know that the Kudla-Rapoport conjecture holds in the case
of N [0]

2 , and hence
IntL◦

2,H (x) = IntL◦
2
(x) = ∂Den2,0

L◦
2
(x).
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By Theorem 10.19 and Theorem 10.21, we have that”IntL◦
2
(x) = ’∂Den

2,0
L◦

2
(x) = q−1(q + 1) vol(⟨x⟩∨)(1 − q−2)−1.

Now, by [Zha22, Proposition 8.2], we know that via the embedding N [0]
2 ↪→ N [h]

n , the Fourier
transform of χ(N [h]

n , OZ(L2)◦ ⊗L OY(N2) ⊗L OZ(L0) ⊗L OZ(x)) is
1
qh
”IntL◦

2
(x) = q−h−1(q + 1) vol(⟨x⟩∨)(1 − q−2)−1.

Now, by Lemmas 3.7 and 10.22, the number of lattices L2 ⊕N in the sum in (11.4) is
Den(A(λ,(−1)h), A(λ,1h))/Den(A(λ,(−1)h), A(λ,(−1)h))

Den(A((−1)h), A(1h))/Den(A((−1)h), A((−1)h))

=
Den(A((λ+1),0h), A((λ+1),2h))/Den(A((λ+1),0h), A((λ+1),0h))

Den(A(0h), A(2h))/Den(A(0h), A(0h))
= q2h.

This implies that ”IntL′♭◦,H (x) = q2hq−h−1(q + 1) vol(⟨x⟩∨)(1 − q−2)−1

= qh−1(q + 1) vol(⟨x⟩∨)(1 − q−2)−1.

Now, by Theorem 10.19, Theorem 10.21, we have that’∂Den
n,h

L′♭◦,V (x) = ’∂Den
n,h

L′♭◦(x) −”IntL′♭◦,H (x) =

 0 if val((x, x)) ≤ −2,
− 1
qh
Dn−1,h−1(a, b, c) if val((x, x)) = −1.

This proves (1) and (2) when (a, b, c) = (1, h, n− h− 2).
Assume that (a, b, c) = (1, h− 2, n−h) and let us write L′♭ = L2 kL1 kL0, where the hermitian

matrix of L2, L1, L0 are πλ (λ ≥ 2), πIh−2, In−h, respectively. Then, by Proposition 2.7, Z(L′♭)◦
H

in N [h]
n can be reduced to Z(L2 k L1)◦

H in N [h]
h . Also, in N [h]

h , we have that Z(w) = Y(π−1w) for
any w ∈ V, and hence Z(L2 kL1)◦

H can be reduced to Z(L2)◦
H = Z(L2)◦ in N [2]

2 . Now, note that
by [KR11, Theorem 1.1], we know that the Kudla-Rapoport conjecture holds in the case of N [2]

2 ,
and hence

IntL◦
2,H (x) = IntL◦

2
(x) = ∂Den2,2

L◦
2
(x).

By Theorem 10.19 and Theorem 10.21, we have that”IntL◦
2
(x) = ’∂Den

2,2
L◦

2
(x) =

®
q−2(q + 1) vol(⟨x⟩∨)(1 − q−2)−1 if val((x, x)) ≤ −2,
q−3(q + 1)(1 − q−2)−1 − q−2 if val((x, x)) = −1.

Now, by [Zha22, Proposition 8.2], we know that via the embedding N [2]
2 ↪→ N [h]

n , the Fourier
transform of χ(N [h]

n , OZ(L2)◦ ⊗L OY(π−1L1) ⊗L OZ(L0) ⊗L OZ(x)) is

1
qh−2

”IntL◦
2
(x) =

®
q−h(q + 1) vol(⟨x⟩∨)(1 − q−2)−1 if val((x, x)) ≤ −2,
q−h−1(q + 1)(1 − q−2)−1 − q−h if val((x, x)) = −1.

Now, by Theorem 10.19, Theorem 10.21, we have that’∂Den
n,h

L′♭◦,V (x) = ’∂Den
n,h

L′♭◦(x) −”IntL′♭◦,H (x) =

 0 if val((x, x)) ≤ −2,
− 1
qh
Dn−1,h−1(a, b, c) + 1

qh
if val((x, x)) = −1.

This proves (1) and (2) when (a, b, c) = (1, h− 2, n− h).
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Assume that (a, b, c) = (0, h− 1, n−h) and let us write L′♭ = L2 kL1 kL0, where the hermitian
matrix of L2, L1, L0 are πI1, πIh−2, In−h, respectively. Note that in this case, val((x, x)) ̸= −1
since val(L♭ k ⟨x⟩) ≡ h + 1 (mod 2). By Proposition 2.7, Z(L′♭)◦

H in N [h]
n can be reduced to

Z(L2 k L1)◦
H in N [h]

h . Also, in N [h]
h , we have that Z(w) = Y(π−1w) for any w ∈ V, and hence

Z(L2 k L1)◦
H can be reduced to Z(L2)◦

H = Z(L2)◦ in N [2]
2 . Now, note that by [KR11, Theorem

1.1], we know that the Kudla-Rapoport conjecture holds in the case of N [2]
2 , and hence

IntL◦
2,H (x) = IntL◦

2
(x) = ∂Den2,2

L◦
2
(x).

By Theorem 10.19, we have that”IntL◦
2
(x) = ’∂Den

2,2
L◦

2
(x) = q−1 vol(⟨x⟩∨)(1 − q−2)−1.

Now, by [Zha22, Proposition 8.2], we know that via the embedding N [2]
2 ↪→ N [h]

n , the Fourier
transform of χ(N [h]

n , OZ(L2)◦ ⊗L OY(π−1L1) ⊗L OZ(L0) ⊗L OZ(x))is

1
qh−2

”IntL◦
2
(x) = q−h+1 vol(⟨x⟩∨)(1 − q−2)−1.

By Theorem 10.19 we have that’∂Den
n,h

L′♭◦,V (x) = ’∂Den
n,h

L′♭◦(x) −”IntL′♭◦,H (x) = 0,

This proves (1) when (a, b, c) = (0, h− 1, n− h).
Assume that (a, b, c) = (0, h, n − h − 1) and let us write L′♭ = L1 k L0, where the hermitian

matrix of L1, L0 are πIh, In−h−1, respectively. By Proposition 2.7, Z(L′♭)◦
H in N [h]

n can be reduced
to Z(L1)◦

H in N [h]
h+1. Therefore, by Theorem 5.3, we have that Z(L1)◦

H = Y(π−1L1) and hence
⟨Y(π−1L1),Z(x)⟩ is ⟨Z(x)⟩ in N [0]

1 . Now, By [KR11, Theorem 1.1] and Proposition 2.7, we know
that ⟨Z(x)⟩ = ∂Den1,0

∅ (x). By Theorem 10.19 and Theorem 10.21, we have that’∂Den
1,0
∅ (x) = vol(⟨x⟩∨)(1 − q−2)−1.

Now, by [Zha22, Proposition 8.2], we know that via the embedding N [0]
1 ↪→ N [h]

n , the Fourier
transform of χ(N [h]

n , OY(π−1L1) ⊗L OZ(L0) ⊗L OZ(x))is

1
qh
’∂Den

1,0
∅ (x) = q−h vol(⟨x⟩∨)(1 − q−2)−1.

This implies that ”IntL′♭◦,H (x) = q−h vol(⟨x⟩∨)(1 − q−2)−1

Now, by Theorem 10.19, Theorem 10.21, we have that’∂Den
n,h

L′♭◦,V (x) = ’∂Den
n,h

L′♭◦(x) −”IntL′♭◦,H (x) =

 0 if val((x, x)) ≤ −2,
− 1
qh
Dn−1,h−1(a, b, c) if val((x, x)) = −1.

This proves (1) and (2) when (a, b, c) = (0, h, n− h− 1).
When (a, b, c) = (0, h+ 1, n−h− 2), let us write L′♭ = L2 kL1 kL0, where the hermitian matrix

of L2, L1, L0 are π1I1, πIh, In−h−2, respectively. Note that in this case, val((x, x)) ̸= −1 since
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val(L♭ k⟨x⟩) ≡ h+1 (mod 2). By Proposition 2.7, Z(L′♭)◦
H in N [h]

n can be reduced to Z(L2 kL1)◦
H

in N
[h]
h+2. Therefore, by Theorem 5.3, we have

(11.5) Z(L2 k L1)◦
H =

∑
L2kL1⊂L2⊕N⊂π−1(L2kL1)

N≃(π−1)h

Z(L2)◦ · Y(N)◦.

By Proposition 2.7 again, Z(L2 k L1)◦
H can be reduced to Z(L2)◦

H = Z(L2)◦ in N [0]
2 . Now,

note that by [KR11, Theorem 1.1], we know that the Kudla-Rapoport conjecture holds in the case
of N [0]

2 , and hence
IntL◦

2,H (x) = IntL◦
2
(x) = ∂Den2,0

L◦
2
(x).

By Theorem 10.19 and Theorem 10.21, we have that”IntL◦
2
(x) = ’∂Den

2,0
L◦

2
(x) = q−1(q + 1) vol(⟨x⟩∨)(1 − q−2)−1.

Now, by [Zha22, Proposition 8.2], we know that via the embedding N [0]
2 ↪→ N [h]

n , the Fourier
transform of χ(N [h]

n , OZ(L2)◦ ⊗L OY(N2) ⊗L OZ(L0) ⊗L OZ(x))is
1
qh
”IntL◦

2
(x) = q−h−1(q + 1) vol(⟨x⟩∨)(1 − q−2)−1.

Now, by Lemmas 3.7 and 10.22, the number of lattices L2 ⊕N in the sum in (11.5) is
Den(A(1,(−1)h), A(1,1h))/Den(A(1,(−1)h), A(1,(−1)h))

Den(A((−1)h), A(1h))/Den(A((−1)h), A((−1)h))

=
Den(A(2,0h), A(2,2h))/Den(A(2,0h), A(2,0h))

Den(A(0h), A(2h))/Den(A(0h), A(0h))
= q2h 1 − (−q)−h−1

1 − (−q)−1 .

This implies that”IntL′♭◦,H (x) = q2h 1 − (−q)−h−1

1 − (−q)−1 q−h−1(q + 1) vol(⟨x⟩∨)(1 − q−2)−1

= qh(1 − (−q)−h−1) vol(⟨x⟩∨)(1 − q−2)−1.

Now, by Theorem 10.19, Theorem 10.21, we have that’∂Den
n,h

L′♭◦,V (x) = ’∂Den
n,h

L′♭◦(x) −”IntL′♭◦,H (x) = 0.

This proves (1) when (a, b, c) = (0, h+ 1, n− h− 2).
This finishes the proof of the theorem. □

Proposition 11.3. (cf. [LZ22a, Proposition 7.3.4], [LL22, Proposition 2.22]) Assume that L♭ be
an OF -lattice of rank n − 1 in V. Then, ∂Denn,h

L′♭,V
(x) extends uniquely to a compactly supported

locally constant function on V (we still denote it by ∂Denn,h
L′♭,V

(x)).

Proof. Even though our situation is more similar to [LZ22a, Proposition 7.3.4], we do not have a
functional equation like [LZ22a, (3.2.0.2)] yet. Therefore, let us follow the proof of [LL22, Propo-
sition 2.22]. Basically, the proof is very similar to the proof of Theorem 11.2 (1).

Note that if L♭ is not integral, then ∂Denn,h
L′♭,V

(x) = 0. Therefore, we can assume that L♭ is
integral. Now, it suffices to show that for every y ∈ L♭

F /L
♭, there exists an integer δ(y) > 0
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such that ∂Denn,h
L′♭,V

(y + x) is constant for x ∈ πδ(y)((L♭
F )⊥)≥0\{0}, where V = L♭

F k (L♭
F )⊥ and

((L♭
F )⊥)≥0 = {(L♭

F )⊥ | (x, x) ∈ OF }. If L♭ + ⟨y⟩ is not integral, then there exists δ(y) such
that L♭ + ⟨y + x⟩ is not integral for x ∈ πδ(y)((L♭

F )⊥)≥0\{0}, and hence ∂Denn,h
L′♭,V

(y + x) = 0.
Therefore, we can assume that L♭ + ⟨y⟩ is integral. Let (a1, a2, . . . , an−1) (a1 ≤ a2 · · · ≤ an−1) be
the fundamental invariants of L♭ and let δ(y) = an−1 + 2. Then, it suffices to show that for a fixed
pair (f1, f2) of generators of ((L♭

F )⊥)≥0, we have

∂Denn,h
L′♭,V

(y + πδf1) − ∂Denn,h
L′♭,V

(y + πδ−1f2) = 0,

for δ > δ(y) = an−1 + 2.
Now, let us introduce some notations from [LL22, Lemma 2.24]. Let L be the set of OF -lattices

in V containing L♭, and let C be the set of triples (L′♭, δ, ϵ) such that L′♭ is an OF -lattice of L♭
F

containing L♭, δ ∈ Z, and ϵ : πδ((L♭
F )⊥)≥0 → L′♭ ⊗OF

F/OF is an OF -linear map. Then, consider
the map θ : L → C sending L to (L ∩ L♭

F , δL, ϵL) where δL is the maximal integer such that the
image of L under the projection Pr⊥ : V → (L♭

F )⊥ is contained in πδL((L♭
F )⊥)≥0, and ϵL is the

extension map πδL((L♭
F )⊥)≥0 → L′♭ ⊗OF

F/OF induced by the short exact sequence

0 → L ∩ L♭
F → L → πδL((L♭

F )⊥)≥0 → 0.

Then, as in the proof of [LL22, Lemma 2.24 (1)], θ is a bijection and its inverse is given by sending
(L′♭, δ, ϵ) to the OF -lattice L generated by L′♭ and ϵ(x) + x for every x ∈ πδ((L♭

F )⊥)≥0.
Now, for every δ′ ∈ Z, we define the following sets

Lδ′
1 := {L ∈ L | L ⊂ L∨, δL = δ′, y + πδf1 ∈ L},

Lδ′
2 := {L ∈ L | L ⊂ L∨, δL = δ′, y + πδ−1f2 ∈ L},

and for L♭ ⊂ L′♭, we define

Lδ′

1,L′♭ := {L ∈ L | L ⊂ L∨, δL = δ′, y + πδf1 ∈ L,L ∩ L♭
F = L′♭},

Lδ′

2,L′♭ := {L ∈ L | L ⊂ L∨, δL = δ′, y + πδ−1f2 ∈ L,L ∩ L♭
F = L′♭}.

Since ∂Denn,h
L♭,V

(x) is a certain sum of ∂Denn,h
L′♭◦,V

(x), it suffices to show that

∂Denn,h
L′♭◦,V

(y + πδf1) − ∂Denn,h
L′♭◦,V

(y + πδ−1f2) = 0,

for δ > δ(y) = an−1 + 2 and L♭ ⊂ L′♭.
By definition, we have that

∂Denn,h
L′♭◦,V

(y + πδf1) =
∑
δ′≤δ

∑
L∈Lδ′

1,L′♭

Dn,h(L),

∂Denn,h
L′♭◦,V

(y + πδ−1f2) =
∑

δ′≤δ−1

∑
L∈Lδ′

2,L′♭

Dn,h(L).

Therefore, it suffices to show that

(11.6)
∑
δ′≤δ

∑
L∈Lδ′

1,L′♭

Dn,h(L) −
∑

δ′≤δ−1

∑
L∈Lδ′

2,L′♭

Dn,h(L) = 0,

for all δ > δ(y) = an−1 + 2 and L♭ ⊂ L′♭.
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Since δ > an−1 + 2, we have that for δ′ ≤ 2, we have

Lδ′

1,L′♭ = Lδ′

2,L′♭ = {L ∈ L | L ⊂ L∨, δL = δ′, y ∈ L,L ∩ L♭
F = L′♭}.

Therefore, (11.6) equals to
δ∑

δ′=2

∑
L∈Lδ′

1,L′♭

Dn,h(L) −
δ−1∑
δ′=2

∑
L∈Lδ′

2,L′♭

Dn,h(L) = 0.

Also, the automorphism of C sending (L′♭, δ′, ϵ) to (L′♭, δ′ − 1, ϵ(πα·)), where α ∈ O×
F , f1 = αf2,

induces a bijection from Lδ′

1,L′♭ to Lδ′−1
2,L′♭ . Therefore, it suffices to show that

(11.7)
∑

L∈L2
1,L′♭

Dn,h(L) = 1L′♭(y)
∑

L⊂L∨,L∩L♭
F =L′♭,δL=2

Dn,h(L) = 0.

Note that by Theorem 11.2 (1), we have that for val((x, x)) ≤ −2,’∂Den
n,h

L′♭◦(x) =
∑

L′♭⊂L⊂L∨,L∩L♭
F =L′♭,x∈L∨

Dn,h(L) vol(L)

= vol(L′♭)
∑

L′♭⊂L⊂L∨,L∩L♭
F =L′♭,x∈L∨

Dn,h(L) vol(Pr⊥(L))

= 0.

Now, choose x to be generators of π−2((L♭
F )⊥)≥0 and π−3((L♭

F )⊥)≥0 and then take the difference.
Then, we have that ∑

L⊂L∨,L∩L♭
F =L′♭,δL=2

Dn,h(L) = 0.

This shows that (11.7) holds which finishes the proof of the proposition. □

Theorem 11.4. Assume that Conjecture 6.3 above holds for N [h]
n and Conjecture 7.6 holds for

Z-cycles in N [h−1]
n−1 . Then, Conjecture 7.6 holds for Z-cycles in N [h]

n .

Proof. As in [LZ22a, section 8.2], we will prove this inductively. Let L♭ ⊂ V be a rank n− 1 lattice
such that L♭

F is non-degenerate, and let x ∈ V\L♭
F . By definition of ∂Denn,h

L♭,V
(x) and ∂Denn,h

L♭◦,V
(x),

it suffices to show that

(11.8) ∂Denn,h
L♭,V

(x) = IntL♭,V (x),

or equivalently

(11.9) ∂Denn,h
L′♭◦,V

(x) = IntL′♭◦,V (x),

for all L♭ ⊂ L′♭ ⊂ L′♭∨.
Now, assume that (11.8) holds for L′′♭ such that val(L′′♭) < val(L♭).
Let (a1, a2, . . . , an−1) (0 ≤ a1 ≤ · · · ≤ an−1) be the fundamental invariants of L♭. Let M =

M(L♭) = L♭ k ⟨u⟩ for some u ∈ V such that val((u, u)) = an := an−1 or an−1 + 1, so that

a1 + a2 + · · · + an ≡ h+ 1 (mod 2).
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Now, assume that (a′
1, a

′
2, . . . , a

′
n) be the fundamental invariants of the lattice L♭ + ⟨x⟩ with a basis

(e′
1, . . . , e

′
n) such that val(e′

i, e
′
i) = a′

i. Let L′′♭ = ⟨e′
1, . . . , e

′
n−1⟩ ane let x′ = e′

n. Then, we have that

IntL♭(x) = IntL′′♭(x), ∂Denn,h
L♭ (x) = ∂Denn,h

L′′♭(x).

By [LZ22a, Lemma 8.2.2], if x /∈ M , then val(L′′♭) < val(L♭), and hence by the inductive hypothesis,
we have that

IntL′′♭(x) = ∂Denn,h
L′′♭(x).

This implies that the support of

ϕ = IntL♭,V (x) − ∂Denn,h
L♭,V

(x) ∈ C∞
c (V)

is contained in the lattice M . Here, IntL♭,V (x) − ∂Denn,h
L♭,V

(x) is in C∞
c (V) by Proposition 11.3,

Theorem 6.5, [LZ22a, Lemma 6.2.1], and [San17, Lemma 2.11].
Now, let us consider x such that val((x, x)) < 0 and x ⊥ L♭. Since we have assumed that

Conjecture 6.3 below holds, by [LZ22a, Lemma 6.3.1] and [Zha22, Theorem 8.1], we have that¤�
χ(N [h]

n , LZ(L♭)V ⊗L OZ(x)) = ”IntL♭,V (x) = − 1
qh

IntL♭,V (Y(x)) := − 1
qh
χ(N [h]

n , LZ(L♭)V ⊗L OY(x)).

From now on, we use IntL♭,V (Y(x)) (resp. IntL♭◦,V (Y(x))) to denote χ(N [h]
n , LZ(L♭)V ⊗L OY(x))

(resp. χ(N [h]
n , LZ(L♭)◦

V ⊗L OY(x))).
Furthermore, note that we can decompose this into primitive parts

− 1
qh

IntL♭,V (Y(x))) =
∑

L♭⊂L′♭⊂L′♭∨

− 1
qh

IntL′♭◦,V (Y(x))

=
∑

L♭⊂L′♭⊂L′♭∨

”IntL′♭◦,V (x).

Now, let us compare this with the analytic side.
When val((x, x)) ≤ −2, we have that Y(x) is empty. Therefore, combining this with Theorem

11.2, we have that
ϕ̂(x) = ”IntL♭,V (x) − ’∂Den

n,h

L♭,V (x) = 0 − 0 = 0.
When val((x, x)) = −1, by Proposition 2.6, we have that”IntL′♭◦,V (x) = − 1

qh
IntL♭◦,V (Y(x)) = − 1

qh
χ(N [h]

n , LZ(L′♭)◦
V ⊗L OY(x))

= − 1
qh
χ(N [h−1]

n−1 , LZ(L′♭)◦
V )

= − 1
qh
χ(N [h−1]

n−1 , LZ(L′♭)◦ − LZ(L′♭)◦
H ).

Since we have assumed that Conjecture 7.6 holds for N [h−1]
n−1 , we have that

− 1
qh
χ(N [h−1]

n−1 , LZ(L′♭)◦) = − 1
qh
Dn−1,h−1(a, b, c),

where (a, b, c) = (t≥2(λ), t1(λ), t0(λ)) and λ ∈ R0+
n−1 is the fundamental invariants of L′♭.

For χ(N [h−1]
n−1 , LZ(L′♭)◦

H ), we have the following two cases.
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First, assume that (a, b, c) ̸= (1, h−2, n−h). Then, by Theorem 5.3 (or see the proof of Theorem
11.2), we have that Z(L′♭)◦

H is empty or the sum of Z(L)◦ · Y(N) for some lattice N ≃ (π−1)h.
Since Y(N) is empty in N [h−1]

n−1 , we have that χ(N [h−1]
n−1 , LZ(L′♭)◦

H ) = 0.
Now, assume that (a, b, c) = (1, h− 2, n−h). Then by Theorem 5.3 (or see the proof of Theorem

11.2), we have that
Z(L′♭)◦

H = Z(L2)◦ · Y(π−1L1) · Z(L0),
where L2 ≃ πλ (λ ≥ 2), π−1L1 ≃ π−1Ih−2, and L0 ≃ In−h. Therefore,

χ(N [h−1]
n−1 , LZ(L′♭)◦

H ) = χ(N [1]
1 , LZ(L2)◦) = D1,1(1, 0, 0) = 1.

Combining these, we have that”IntL′♭◦,V (x) =


− 1
qh
Dn−1,h−1(a, b, c) if (a, b, c) ̸= (1, h− 2, n− h),

− 1
qh
Dn−1,h−1(a, b, c) + 1

qh
if (a, b, c) = (1, h− 2, n− h).

Therefore, by Theorem 11.2, we have that”IntL′♭,V (x) − ’∂Den
n,h

L′♭,V (x) = 0 for val((x, x)) < 0.

This implies that ϕ̂ = 0 for val((x, x)) < 0.
Now, we only need to follow the proof of [LZ22a, Theorem 8.2.1].
Since ϕ is invariant under L♭ and Supp(ϕ) ⊂ M , we have that

ϕ = 1L♭ ⊗ ϕ⊥,

where ϕ⊥ ∈ C∞
c ((L♭

F )⊥) and ϕ⊥ is supported on M⊥ = ⟨u⟩. Then, we have

ϕ̂ = vol(L♭)1L♭∨ ⊗”ϕ⊥,

and ”ϕ⊥ is invariant under the translation by ⟨u∨⟩ = ⟨π−anu⟩. Since val((u∨, u∨)) = −an < 0 and”ϕ⊥ = 0 for every x such that x ⊥ L♭, val((x, x)) < 0, we have that ”ϕ⊥ vanishes identically and
hence ϕ = 0. This finishes the proof of the Theorem. □

Theorem 11.5. (cf. [LZ22a, Theorem 8.2.1, Theorem 10.5.1]) Conjecture 7.6 holds for Z-cycles
in N [0]

n ,N [1]
n ,N [n−1]

n ,N [n]
n , and N [2]

4 .

Proof. This follows from Theorem 11.4 and Theorem 6.5. □

Remark 11.6. We remark that the Kudla-Rapoport conjecture for N [0]
n , N [n]

n (good reductions
case), N [1]

n (almost self-dual case) is already proved in [LZ22a]. Therefore, our new cases are N [n−1]
n

and N [2]
4 . We also remark that our work gives a different proof of the conjecture for N [1]

n .
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[Wei65] A. Weil, Sur la formule de Siegel dans la théorie des groupes classiques, Acta Math. 113 (1965), 1–87.
MR0223373 ↑1

[Zha22] Z. Zhang, Maximal parahoric arithmetic transfers, resolutions and modularity, 2022. ↑6, 19, 24, 86, 87, 88,
91

Department of Mathematics, POSTECH, 77, Cheongam-ro, Nam-gu, Pohang-si, Gyeongsangbuk-do,
Korea

Email address: sungyooncho@postech.ac.kr

Department of Mathematics, Columbia University, 2990 Broadway, New York, NY 10027, USA
Email address: qh2275@columbia.edu

Department of Mathematics, Stanford University, 450 Jane Stanford Way Building 380, Stanford,
CA 94305

Email address: zyuzhang@stanford.edu

94

http://www.ams.org/mathscinet-getitem?mr=1503238
http://www.ams.org/mathscinet-getitem?mr=0067930
http://www.ams.org/mathscinet-getitem?mr=0223373

	1. Introduction
	2. Rapoport-Zink space and special cycles
	3. Local density and the modified Kudla–Rapoport conjecture
	4. Our strategy: N[2]4
	5. Horizontal parts of Kudla–Rapoport cycles
	6. Local modularity and Tate conjectures
	7. Weighted representation densities and conjectures
	8. Cho-Yamauchi constants
	9. Inductive relations among Cho-Yamauchi constants
	10. Fourier transform
	11. Tate conjectures and the proof of the main theorem
	References

